
Large Language Models for Automated Network
Protocol Testing: A Survey

Vy Dang Phuong Nguyen
Dept. of Computer Science

University of the Pacific
Stockton, CA, USA

v nguyen110@u.pacific.edu

Sepehr Amir-Mohammadian
Dept. of Computer Science

University of the Pacific
Stockton, CA, USA

samirmohammadian@pacific.edu

Abstract—This paper surveys state-of-the-art methods lever-
aging Large Language Models (LLMs) for automated test case
generation in network protocols, with a focus on addressing
ambiguities in protocol specifications and enhancing test cov-
erage. Traditional approaches face challenges in scaling and
ensuring thorough compliance. LLMs, with their natural lan-
guage understanding capabilities, offer a promising solution by
automating the extraction of specifications from Request for
Comments (RFCs) and generating structured models and test
cases. Relevant studies, tools and frameworks are reviewed and
analyzed to understand how LLMs are used in this area. The
paper discusses their strengths and limitations, aiming to support
further research on LLMs to improve the reliability and efficiency
of network protocol testing.

Index Terms—Large Language Models, Network Protocols,
Request for Comments, Testing

I. INTRODUCTION

Advancements in artificial intelligence and machine learn-
ing have revolutionized the field of software engineering.
The development of large language models (LLMs), notably
OpenAI’s GPT-3, introduced in 2020, has achieved excel-
lent results in tasks such as code generation [1]. Powered
by the later improved version of GPT-3, ChatGPT gained
rapid popularity worldwide by reaching 123 million monthly
active users within less than three months of its launch in
November 2022 [2]. ChatGPT outperforms other learning-
based techniques in terms of syntactic, compilation, and execu-
tion correctness [3]. LLMs such as ChatGPT have shown their
potential to enhance the efficiency of software testing, thus
ensuring the quality, reliability and compliance of programs
with industry standards.

Established software testing methods, including unit tesing
and model-based testing, are prevalent in finding bugs to
ensure software reliability. However, traditional applications
of these methods often require significant manual effort in
planning, writing, and evaluating tests, especially for com-
plicated systems such as programmable logic controllers and
distributed control systems [4].

Public unit testing frameworks and tools such as TcUnit [5]
and CODESYS Test Manager [6] can automate test execution,
but they still rely on manually written test cases. To address
this challenge, newer iterations of LLMs, including OpenAI’s
GPT-4 [7], are capable of generating test cases with high

statement coverage for low-to-medium complexity software
programs [4]. Building on more advancements in LLMs, al-
gorithms such as CODAMOSA [8] leverage OpenAI’s Codex
[9] model to automatically generate test cases for areas of
the program where traditional search-based software testing
methods stall.

Despite recent advances in applying LLMs to software
testing, their use in network protocol implementation test-
ing, particularly in generating test cases from Request for
Comments (RFC)-based specifications remains underexplored.
RFCs are formal documentations that define the standards for
internet protocols [10]. They are written in natural language,
which can be ambiguous and makes it challenging to write
tests without first understanding the protocol specifications.
Protocol implementation testing is crucial for identifying bugs
that may lead to incorrect or inconsistent behavior, security
vulnerabilities, and more [11]. This survey paper reviews a
range of methods and tools related to generating test cases
from RFC-based specifications, including manual approaches
and recent work that apply LLMs to related tasks. While
some methods do not fully automate test generation directly
from RFCs using LLMs, frameworks such as PROSPER [12]
use LLMs to extract protocol finite state machines (FSMs)
from RFCs, which could be used in further tasks including
test generation. By analyzing these tools and frameworks, this
paper provides an overview of the current state of research,
identifies existing challenges, and explores opportunities for
advancing network protocol testing through LLMs. The goal is
to provide a comprehensive overview of the current approaches
and highlight areas for future research in automated protocol
testing.

The paper is organized as follows: Section II outlines
research questions and methodology. Section III provides a
background on manual and automated testing approaches.
Section IV reviews network protocol testing methods, with a
focus on recent tools and approaches that use LLMs. Section V
outlines future research directions, and Section VI concludes
the paper.

II. METHODOLOGY

This section outlines the approach taken to conduct a
systematic and focused survey of literature related to the use



of LLMs in network protocol testing. Our goal is to identify
and analyze trends, methodologies, tools, and research gaps in
this emerging area.

A. Research Questions

This survey paper aims to answer the following questions
about protocol testing with a focus on the use of LLMs.

RQ1: What methods currently exist for testing network
protocol implementations?

RQ2: To what extent are LLMs being used in automating
network protocol testing?

RQ3: What are the strengths and limitations of state-of-the-
art tools and approaches?

RQ4: What are the future directions for automating protocol
testing using LLMs?

B. Search Strategies

To ensure a comprehensive survey of related work, we
followed three steps.

First, we searched through online academic databases to find
peer-review articles, survey papers and conference papers. The
primary used databases were Google Scholar, IEEE Xplore,
arXiv, and ACM Digital Library. We queried for papers
using a combination of keywords such as “automated test
generation”, “protocol testing”, “LLM for protocol testing”,
and “RFC compliance”. The search preference was given to
papers published from 2020 to 2025 to ensure the content
remains relevant and up to date. However, earlier studies were
also included if they described tools or methods still significant
to the topic. Many of the sources reflect recent work on
LLMs and their applications in automated testing, including
developments in state-of-the-art models.

Second, we reviewed abstracts of papers to filter out papers
that were:

1) not related to network protocol, LLMs, or software
testing;

2) not supported by results or evaluation of the proposed
approaches or tools;

3) not accessible online;
4) not written in English.
Third, we selected the most relevant papers for in-depth

analysis by examining each paper’s objective, methodology,
strengths and limitations of proposed approaches or tools, and
its relevance to key themes such as the use of LLMs, protocol
testing, and automated tools or frameworks.

III. BACKGROUND

This section compares the manual and automated approach
for generating test cases in the context of network protocol
implementations.

A. Manual Approaches to Test Case Generation

In traditional software testing, test planning and effort esti-
mation are done manually based on engineers’ understanding
of the system and its specifications. In a survey on software
testing practices, 57% of testing experts implied that they do

not use any tools for test estimation and instead rely on their
own personal knowledge [13]. In the context of computer
networking, RFCs outline specific structures and behaviors
that a network protocol must follow, such as message formats,
command syntax, or error handling. They usually consist of
tens of pages of text, requiring engineers to carefully read and
interpret the specifications, and manually translate them into
tests [14]. While this approach allows customizing test cases
for specific functionalities of the programs, it requires signif-
icant manual effort and can delay the development process.
It is also prone to human errors, such as missing edge cases,
inconsistent code coverage, or misinterpreting specifications,
which can reduce the quality of the testing phase [15], [16].

B. Automated Approaches to Test Case Generation
To address these challenges, automated testing approaches

are a more efficient alternative to manual methods. Tech-
niques such as model-based testing [17]–[21], symbolic exe-
cution [22], [23], search-based testing [24], [25], fuzzing [26]–
[31], and constraint-based testing [32]–[34] are widely studied.
These approaches allow engineers to systematically explore
input spaces, parse specifications, and uncover program be-
haviors that might be overlooked with manual efforts.

More recently, the use of LLMs in analyzing protocol speci-
fications written in natural language, such as RFCs, has gained
significant attention. LLMs are capable of automatically in-
terpreting and translating these specifications into structured
formal models [12], [35]. These outputs can be used to validate
system behavior, particularly in cases where specifications
are ambiguous or under-specified. Utilizing LLMs for test
generation reduces the manual effort required for translating
specifications and allows more accurate and consistent test
cases, which ensures software compliance and reliability.

One relevant tool is SAGE [36], which specifically ad-
dresses ambiguities and under-specifications in protocol RFCs.
It uses natural language processing (NLP) to parse and process
key components such as packet format, pseudocode, commu-
nication patterns, interoperation, etc. Once ambiguities are re-
solved, SAGE can automatically generate executable protocol
code. It has successfully been applied to the ICMP protocol
and sections of other protocols, including BFD, IGMP, and
NTP. However, SAGE still requires human intervention to
rewrite ambiguous or under-specified sentences. It also faces
difficulties in understanding protocols with complex state ma-
chine descriptions, e.g., TCP, or architectural communication
patterns, e.g., BGP.

IV. PROTOCOL COMPLIANCE TESTING

This section reviews major automated testing methods for
network implementations, highlighting the strengths and weak-
nesses of relevant frameworks and tools. In particular, we
focus on approaches that have been explored in combination
with LLMs.

A. Model-based Testing
Model-based testing (MBT) is a prevalent approach in

network protocol testing by creating abstract models of the



system and compare them against the implementations to
detect compliance issues [37]–[40]. MBT is particularly effec-
tive for complex systems with well-defined behaviors, where
manually creating test cases for every possible state would be
impractical. It can cover different edge cases and conditions
to ensure high coverage. For example, Li et al. [38] present
an automatic testing framework for the HTTP/1.1 protocol that
models both the server and network behavior using interaction
trees. These trees are then executed to systematically gener-
ate test cases that target under-specified behaviors in RFCs.
Their framework uncovered several violations of RFC 7232
in Apache and Nginx. However, one significant limitation
of MBT is that generating models that accurately represent
the behavior of time-sensitive processes and systems can be
challenging [19]–[21]. This is particularly relevant to protocols
such as TCP and QUIC, which rely on asynchronous message
exchange and time-sensitive operations.

Another type of such abstract models are FSMs, which
represent the system through a set of states and transitions.
Pacheco et al. [35] present a methodology for testing network
implementations by automatically extracting FSMs from RFC
specifications. Their approach begins by training a model on
8,858 RFCs to learn the distributed word representation of the
technical language used in these documents. Next, they apply
a zero-shot learning approach to extract structured protocol
information, which is then converted into an FSM specific to
that protocol. They successfully extract FSMs for six different
protocols, with the highest exact match accuracy of 98.73% for
PPTP. These FSMs are applied to synthesize attacks against
protocols such as TCP and DCCP. However, the approach
has limitations in extracting complete models of the protocol
behavior, known as canonical FSMs, due to the ambiguity and
under-specifications in RFCs, which may result in incomplete
state coverage or incorrect transitions.

Sharma et al. [12] propose a similar framework named
PROSPER that uses GPT-3.5 Turbo [41] to automate the
extraction of FSMs from RFCs. They developed a helper
tool named ArtifactMiner that can extract non-textual artifacts
such as diagrams, topologies or message structures. Their
approach achieved 1.3x more true positives and 6.5x fewer
false positives than existing approaches for the DCCP protocol.
The extracted FSMs are proposed to be used in further tasks
such as intrusion detection and protocol interface generation.
By automating FSM extraction, PROSPER supports model-
based testing by reducing the manual effort in modeling pro-
tocol behaviors. However, PROSPER’s utilization of an LLM
introduces limitations such as inconsistent output formats,
occasional hallucinations, and misinterpretation of the protocol
context.

Another notable work on MBT is IVy, a formal verification
tool used to specify, model, implement and verify protocol
requirements [42], [43]. First, engineers manually write formal
specifications of the system such as packets, frames, and
connection states in IVy. Then, IVy uses these specifications
to generate randomized test cases, which are run against real-
life implementations to verify whether the system complies

with the protocol.
IVy has been applied to verify the QUIC protocol [44]

as well as a blockchain consensus protocol [45]. Using IVy,
Crochet et al. [44] extended the formal IVy model of QUIC
to include more specifications such as transport error codes
and connection ID management. They applied the generated
tests against 7 existing QUIC implementations and discovered
the inconsistencies across them. These insights are incredibly
valuable for improving both the implementations and the
QUIC specification itself.

However, IVy struggles to model time-sensitive behaviors,
a limitation previously noted in MBT, due to its lack of
support for presenting time-related properties. To address this,
Rousseaux et al. [46] propose a novel MBT-based methodol-
ogy called Network Simulator-Centric Compositional Testing
(NSCT) to address time-varying network properties in protocol
testing using IVy. NSCT works by combining formal models
in IVy with a Shadow network simulator to generate and
execute tests against network implementations. This approach
was used to uncover an error in picoquic, an implementation
of QUIC. Despite its strengths, IVy requires manual effort to
define and update formal specifications from RFCs, which can
limit its scalability for protocols with frequent updates. This
limitation highlights an opportunity for future work explored
further in Section V.

B. Symbolic Execution

Symbolic execution is an automatic software testing method
that explores different execution paths of the program by treat-
ing inputs as symbolic variables instead of fixed values [22]. It
uses constraint solvers to generate inputs that satisfy specific
path conditions and use them to generate test cases. This
approach is particularly useful for uncovering edge cases and
logic errors that might not be found with random or manually
written test cases.

Song et al. [47] present SYMBEXNET, a framework that
combines symbolic execution and rule-based specifications
from RFCs to test network protocol implementations. While it
does not incorporate LLMs, it can automatically generate test
input packets that explore deep execution paths in DHCP and
Zeroconf implementations. These inputs are validated against
manually written rules that describe protocol behaviors to de-
tect semantic bugs, implementation flaws, and interoperability
issues across 5 network daemons. SYMBEXNET uncovered
39 unique bugs across these implementations and achieved
significantly higher code coverage compared to random test-
ing. However, it is limited to C-based implementations and
relies on manual rule extraction from protocol documents, a
challenge addressed by LLM-based approaches discussed in
previous sections.

Fakhoury et al. [48] introduce 3DGen, a framework that uses
LLM-based agents to convert protocol specifications, such as
RFCs and packet examples, into a formal language called 3D.
The framework uses symbolic execution to generate test inputs
that might be overlooked by human-written specifications and



validate them against test oracles such as Wireshark. This pro-
cess allows 3DGen to identify errors, refine specifications, and
distinguish between plausible formats. It is validated across 20
protocols including TCP, UDP, and IPv6. However, 3DGen’s
performance depends on the quality and completeness of the
test oracles and is prone to syntax errors and misinterpretation
from parsing ambiguous RFCs.

Karkala et al. [11] propose a new testing approach called
SCALE (Small-scope Constraint-driven Automated Logical
Execution) to address RFC compliance bugs in DNS imple-
mentations. The approach starts by using RFCs to create a
logical model of the protocol behaviors. SCALE then performs
symbolic execution on an executable version of the model to
generate high-coverage tests that can be applied to many DNS
implementations, including black-box systems.

Through this process, SCALE automatically generates both
zone files and corresponding DNS queries based on the
symbolic execution of a formal DNS model implemented in
a modeling language called Zen. Based on this model, the
authors introduce a testing tool called FERRET that runs
the generated tests across 8 existing DNS implementations
and compare their responses. FERRET has generated over
13,500 test cases, with 62% resulting in inconsistent behavior
across existing implementations such as BIND, Knot, NSD,
and PowerDNS. It also discovered 30 unique bugs, including
crashes and violations of expected RFC behavior.

However, FERRET has some limitations, including gener-
ating valid zone files that follow the strict rules in RFCs. If
the files are incorrect, the tests can fail before the DNS logic
is even tested. The tool also limits the size of the DNS files
it generates, which can cause it to miss bugs that only appear
in larger programs. While FERRET does not integrate LLMs,
it aligns with the goal of uncovering RFC compliance issues
in network protocols through automated test generation. The
authors’ proposed SCALE approach demonstrates its ability
in identifying critical bugs and ensuring RFC compliance with
potential to extend its application beyond DNS.

C. Fuzzing

Fuzzing is a technique in detecting software vulnerabilities
by sending malformed test data to the target program and
monitor its behaviors [28]. Traditional fuzzing treats each data
input independently, whereas protocol fuzzing must generate
sequences of messages that follow the current state [29].
Fuzzing test cases can be mutation-based, where inputs are
slightly modified, and generation-based, where inputs are
constructed based on a model or grammar defined by the
protocol.

Several traditional fuzzing tools have been developed specif-
ically for testing network protocol implementations, which
often incorporate variations of FSMs to improve validity and
coverage. However, they do not utilize LLMs but instead
rely on manual or rule-based methods, making it challenging
to scale to ambiguous or complex protocol specifications.
Prospex [49] is a protocol reverse engineering tool that uses
dynamic taint analysis to extract state machines from network

traffic. It analyzes how input data affects server behavior
and uses the extracted state machines to guide fuzzing to
uncover program vulnerabilities. Netzob [30] is another open-
source tool that infers protocol specifications through lexical
and syntactic analysis of network traffic. It generates state
machines to simulate protocol behavior and perform fuzzing
on a wide range of protocols, including both proprietary or
undocumented protocols and well-documented ones such as
HTTP, IP, and TCP.

A more recent effort by Meng el al. [31] introduces
CHATAFL, a fuzzing engine that incorporates LLMs. Rather
than extracting specifications from RFCs, it uses knowledge
from GPT-3.5-turbo to construct grammars for protocol mes-
sage types, mutate the inputs and generate message sequences
using predicted protocol states. CHATAFL achieved 47.60%
and 42.69% more state transitions in comparison to AFLNET
and NSFUZZ fuzzers, respectively, when evaluated on proto-
col implementations from ProFuzzBench. It also discovered 9
new vulnerabilities in three existing protocol implementations,
including Live555 (RTSP), ProFTPD (FTP), and Kamailio
(SIP). However, CHATAFL faces certain limitations such as
occasional inconsistencies for message types or session IDs,
resulted by the LLM incorporation, and its evaluation is
currently restricted to text-based protocols.

D. Limitations of LLMs for Protocol Testing

While LLMs have shown significant potential in advanc-
ing network protocol testing, they have key limitations that
affect their accuracy. These models face challenges in parsing
natural language, which can lead to incorrect or inconsistent
inputs [50]–[53]. For example, LLMs may hallucinate false
positives by extracting transition states that do not exist in the
original RFC [12]. Even highly advanced LLMs, such as GPT-
4, suffer from occasional hallucinations [54]. Furthermore,
these models may generate incorrect or fragile outputs and face
performance issues due to their reliance on external systems.
Because of their probabilistic nature, these models may also
produce different test cases for the same input prompt [55].

Another limitation of LLMs is contextual misunderstanding,
meaning the model may misinterpret a prompt due to the
lack of context. For example, in the case of PROSPER [12],
the model confuses message structures with FSM states when
extracting from PPTP. LLMs occasionally struggle with accu-
rately interpreting and applying the existing logic for functions
that are more complex [4]. Those limitations may result in
inaccurate representations of how the system works, which
can cause issues in the software implementation. Incorrect
implementation of protocol specifications can lead to critical
security bugs and miscommunication between systems [56],
[57].

Despite these limitations, the use of LLMs in automating
protocol testing can still be beneficial, as even incorrect out-
puts can help identify defects and test corner cases [58]. How-
ever, additional steps are needed to refine the input prompts,
identify mismatches in the generated codes, and verify their
functionalities. Manual interventions are still necessary to



ensure the accuracy and consistency of LLM-generated code or
specifications. This approach is also referred to as “human-in-
the-loop”, where humans would leverage AI to automate tasks
while refining its outputs to ensure accuracy before finalizing
the results [59]–[61].

V. FUTURE WORK

In this section, we describe different potential areas for
future work, including:

1) Improving the accuracy of specification extraction: Cur-
rent methods for extracting specifications from RFCs using
LLMs can be enhanced to improve precision and address
ambiguities. Future work could focus on fine-tuning domain-
specific LLMs to better understand protocol-specific termi-
nologies and structures. Additionally, exploring hybrid ap-
proaches that combine LLMs with rule-based techniques or
human-in-the-loop validation could further enhance accuracy
in this domain.

2) Formalization of complex protocols: Future efforts could
focus on adapting the discussed approaches to handle more
complex, multilayered protocols that involve time-sensitive or
asynchronous interactions. Improved testing methods could
account for these properties to better simulate real-world
protocol behavior under various network conditions for more
accurate and comprehensive protocol validation.

3) Integration of real-world testing scenarios: Beyond RFC-
based specifications, future research could investigate the
application of this method to real-world implementations,
ensuring that generated test cases address not only theoretical
compliance but also practical interoperability challenges. This
could include incorporating real-time data, e.g., network logs
or traces, to refine test case generation.

4) Automating feedback loops for test refine: Future work
could explore creating an automated feedback approach that
analyzes test execution results to iteratively refine tests gen-
erated by LLMs. This could include detecting failed test
cases, analyzing the causes, and using reinforcement learning
techniques to prompt the LLM to adjust its understanding or
regenerate tests accordingly.

5) Scaling existing approaches to a broader range of
protocols: Extending the discussed tools and frameworks to
test protocols across various domains, e.g., IoT, telecommu-
nications and blockchain, could demonstrate their versatility
and scalability.

6) Evaluating performance and usability: Future work could
systematically benchmark the proposed approach against tra-
ditional and other automated testing methodologies to quantify
improvements in efficiency, coverage, and error detection.

VI. CONCLUSION

This paper provides a comprehensive survey of approaches
that apply LLMs to automate test generation for network
protocol implementations, with a focus on RFC-based spec-
ifications. LLMs have shown ability in reducing the manual
effort required to interpret natural language specifications by
generating structured models that support protocol compliance

testing. LLMs have been also applied across a range of proto-
col testing methods, including model-based testing, symbolic
execution and fuzzing. Additionally, recent work has proposed
new approaches that further contribute to enhancing testing
capabilities

While these approaches show significant results, LLMs still
have certain limitations. They can struggle with ambiguity,
hallucinations, inconsistent outputs, and contextual misunder-
standing. The primary objective of this paper is to establish
a foundation for future research by reviewing existing tools
and approaches, evaluating their capabilities, and identifying
challenges in the application of LLMs to network protocol
testing. As LLM capabilities continue to advance, future work
can build on these foundations to explore new opportunities
for enhancing the scalability, accuracy, and real-world appli-
cability of protocol testing.

REFERENCES

[1] M. Zhang and J. Li, “A commentary of GPT-3 in MIT technology review
2021. fundamental research, 1 (6), 831-833,” 2021.

[2] J. Rudolph, S. Tan, and S. Tan, “War of the chatbots: Bard, Bing Chat,
ChatGPT, Ernie and beyond. the new AI gold rush and its impact on
higher education,” Journal of Applied Learning and Teaching, vol. 6,
no. 1, pp. 364–389, 2023.

[3] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[4] H. Koziolek, V. Ashiwal, S. Bandyopadhyay, and K. Chandrika, “Auto-
mated control logic test case generation using large language models,”
in 2024 IEEE 29th International Conference on Emerging Technologies
and Factory Automation (ETFA). IEEE, 2024, pp. 1–8.

[5] M. Hollender, Collaborative process automation systems. ISA, 2010.
[6] M. Tiegelkamp and K.-H. John, IEC 61131-3: Programming industrial

automation systems. Springer, 2010, vol. 166.
[7] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,

D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “GPT-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[8] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “Codamosa: Escaping
coverage plateaus in test generation with pre-trained large language
models,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). IEEE, 2023, pp. 919–931.

[9] OpenAI, “OpenAI Codex.” [Online]. Available:
https://openai.com/index/openai-codex/

[10] S. McQuistin, M. Karan, P. Khare, C. Perkins, G. Tyson, M. Purver,
P. Healey, W. Iqbal, J. Qadir, and I. Castro, “Characterising the IETF
through the lens of RFC deployment,” in Proceedings of the 21st ACM
Internet Measurement Conference, 2021, pp. 137–149.

[11] S. K. R. Kakarla, R. Beckett, T. Millstein, and G. Varghese, “Ferret:
Automatically finding RFC compliance bugs in DNS nameservers.”

[12] P. Sharma and V. Yegneswaran, “PROSPER: Extracting protocol speci-
fications using large language models,” in Proceedings of the 22nd ACM
Workshop on Hot Topics in Networks, 2023, pp. 41–47.

[13] J. Lee, S. Kang, and D. Lee, “Survey on software testing practices,” IET
software, vol. 6, no. 3, pp. 275–282, 2012.

[14] J. Yen, R. Govindan, and B. Raghavan, “Tools for disambiguating
RFCs,” in Proceedings of the 2021 Applied Networking Research
Workshop, 2021, pp. 85–91.

[15] D. S. Taley and B. Pathak, “Comprehensive study of software testing
techniques and strategies: a review,” Int. J. Eng. Res, vol. 9, no. 08, pp.
817–822, 2020.

[16] K. Meinke, “Code coverage and test automation: State of the art,” arXiv
preprint arXiv:2108.11723, 2021.

[17] M. N. Zafar, W. Afzal, E. Enoiu, A. Stratis, A. Arrieta, and G. Sagardui,
“Model-based testing in practice: An industrial case study using graph-
walker,” in Proceedings of the 14th Innovations in Software Engineering
Conference (formerly known as India Software Engineering Conference),
2021, pp. 1–11.



[18] P. van Spaendonck, “Efficient dynamic model based testing: Using
greedy test case selection,” in International Conference on Formal Tech-
niques for Distributed Objects, Components, and Systems. Springer,
2023, pp. 173–188.

[19] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Software testing, verification and reliability, vol. 22,
no. 5, pp. 297–312, 2012.

[20] A. Aerts, M. Reniers, and M. R. Mousavi, “Model-based testing of
cyber-physical systems,” in Cyber-Physical Systems. Elsevier, 2017,
pp. 287–304.

[21] J. Vain, E. Halling, G. Kanter, A. Anier, and D. Pal, “Model-based test-
ing of real-time distributed systems,” in International Baltic Conference
on Databases and Information Systems. Springer, 2016, pp. 272–286.

[22] E. Kurian, D. Briola, P. Braione, and G. Denaro, “Automatically gen-
erating test cases for safety-critical software via symbolic execution,”
Journal of Systems and Software, vol. 199, p. 111629, 2023.

[23] J. Jaffar, R. Maghareh, S. Godboley, and X.-L. Ha, “Tracerx: Dynamic
symbolic execution with interpolation (competition contribution),” Fun-
damental Approaches to Software Engineering, vol. 12076, p. 530, 2020.

[24] F. Ahsan and F. Anwer, “A critical review on search-based security
testing of programs,” Computational Intelligence: Select Proceedings of
InCITe 2022, pp. 207–225, 2023.

[25] F. Pecorelli, G. Grano, F. Palomba, H. C. Gall, and A. De Lucia, “Toward
granular search-based automatic unit test case generation,” Empirical
Software Engineering, vol. 29, no. 4, pp. 1–49, 2024.

[26] Z. Yu, Z. Liu, X. Cong, X. Li, and L. Yin, “Fuzzing: Progress, chal-
lenges, and perspectives,” CMC-COMPUTERS MATERIALS & CON-
TINUA, vol. 78, no. 1, pp. 1–29, 2024.

[27] A. Zhang, Y. Zhang, Y. Xu, C. Wang, and S. Li, “Machine learning-
based fuzz testing techniques: A survey,” IEEE Access, 2023.

[28] L. Huang, P. Zhao, H. Chen, and L. Ma, “Large language models based
fuzzing techniques: A survey,” arXiv preprint arXiv:2402.00350, 2024.

[29] Z. Zhang, H. Zhang, J. Zhao, and Y. Yin, “A survey on the development
of network protocol fuzzing techniques,” Electronics, vol. 12, no. 13, p.
2904, 2023.

[30] Netzob, “Netzob: Protocol reverse engineering, modeling and fuzzing.”
[Online]. Available: https://github.com/netzob/netzob

[31] R. Meng, M. Mirchev, M. Böhme, and A. Roychoudhury, “Large
language model guided protocol fuzzing,” in Proceedings of the 31st
Annual Network and Distributed System Security Symposium (NDSS),
vol. 2024, 2024.

[32] S. Bardin, B. Botella, F. Dadeau, F. Charreteur, A. Gotlieb, B. Marre,
C. Michel, M. Rueher, and N. Williams, “Constraint-based software
testing,” Journée du GDR-GPL, vol. 9, p. 1, 2009.

[33] A. Gotlieb, “Euclide: A constraint-based testing framework for critical
c programs,” in 2009 International Conference on Software Testing
Verification and Validation. IEEE, 2009, pp. 151–160.

[34] M. Fleischmann, D. Kaindlstorfer, A. Isychev, V. Wüstholz, and
M. Christakis, “Constraint-based test oracles for program analyzers,”
in Proceedings of the 39th IEEE/ACM International Conference on
Automated Software Engineering, 2024, pp. 344–355.

[35] M. L. Pacheco, M. von Hippel, B. Weintraub, D. Goldwasser, and
C. Nita-Rotaru, “Automated attack synthesis by extracting finite state
machines from protocol specification documents,” in 2022 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 2022, pp. 51–68.

[36] J. Yen, T. Lévai, Q. Ye, X. Ren, R. Govindan, and B. Raghavan, “Semi-
automated protocol disambiguation and code generation,” in Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, 2021, pp. 272–286.

[37] I. Schieferdecker and A. Hoffmann, “Model-based testing,” IEEE soft-
ware, vol. 29, no. 1, pp. 14–18, 2012.

[38] Y. Li, B. C. Pierce, and S. Zdancewic, “Model-based testing of
networked applications,” in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021, pp.
529–539.

[39] W. H. Allen, C. Dou, and G. A. Marin, “A model-based approach to the
security testing of network protocol implementations,” in Proceedings.
2006 31st IEEE Conference on Local Computer Networks, 2006, pp.
1008–1015.

[40] A. Sosnovich, O. Grumberg, and G. Nakibly, “Formal black-box analysis
of routing protocol implementations,” 2017.

[41] OpenAI, “GPT-3.5 Turbo.” [Online]. Available:
https://platform.openai.com/docs/models/gpt-3.5-turbo

[42] K. L. McMillan and L. D. Zuck, “Compositional testing of internet
protocols,” in 2019 IEEE Cybersecurity Development (SecDev). IEEE,
2019, pp. 161–174.

[43] K. L. McMillan and O. Padon, “Ivy: A multi-modal verification tool for
distributed algorithms,” in Computer Aided Verification: 32nd Interna-
tional Conference, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020,
Proceedings, Part II 32. Springer, 2020, pp. 190–202.

[44] C. Crochet, T. Rousseaux, M. Piraux, J.-F. Sambon, and A. Legay,
“Verifying QUIC implementations using Ivy,” in Proceedings of the
2021 Workshop on Evolution, Performance and Interoperability of
QUIC, 2021, pp. 35–41.

[45] M. Praveen, R. Ramesh, and I. Doidge, “Formally verifying the
safety of pipelined moonshot consensus protocol,” arXiv preprint
arXiv:2403.16637, 2024.

[46] T. Rousseaux, C. Crochet, J. Aoga, and A. Legay, “Network simulator-
centric compositional testing,” in International Conference on For-
mal Techniques for Distributed Objects, Components, and Systems.
Springer, 2024, pp. 177–196.

[47] J. Song, C. Cadar, and P. Pietzuch, “Symbexnet: Testing network
protocol implementations with symbolic execution and rule-based spec-
ifications,” IEEE Transactions on Software Engineering, vol. 40, no. 7,
pp. 695–709, 2014.

[48] S. Fakhoury, M. Kuppe, S. K. Lahiri, T. Ramananandro, and N. Swamy,
“3dgen: Ai-assisted generation of provably correct binary format
parsers,” arXiv preprint arXiv:2404.10362, 2024.

[49] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex:
Protocol specification extraction,” in 2009 30th IEEE Symposium on
Security and Privacy. IEEE, 2009, pp. 110–125.

[50] N. Soni, H. A. Schwartz, J. Sedoc, and N. Balasubramanian, “Large
human language models: A need and the challenges,” arXiv preprint
arXiv:2312.07751, 2023.

[51] I. O. Gallegos, R. A. Rossi, J. Barrow, M. M. Tanjim, S. Kim,
F. Dernoncourt, T. Yu, R. Zhang, and N. K. Ahmed, “Bias and fairness
in large language models: A survey,” Computational Linguistics, vol. 50,
no. 3, pp. 1097–1179, 2024.

[52] S. Raza, A. Raval, and V. Chatrath, “Mbias: Mitigating bias
in large language models while retaining context,” arXiv preprint
arXiv:2405.11290, 2024.

[53] A. Hajikhani and C. Cole, “A critical review of large language models:
Sensitivity, bias, and the path toward specialized AI,” Quantitative
Science Studies, pp. 1–22, 2024.

[54] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen,
W. Peng, X. Feng, B. Qin et al., “A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions,”
ACM Transactions on Information Systems, 2023.

[55] V. Hnatushenko and I. Pavlenko, “The use of generative artificial
intelligence in software testing,” vol. 2, no. 151, pp. 113–123, 2024.

[56] K. Alshmrany and L. Cordeiro, “Finding security vulnerabilities in
network protocol implementations,” arXiv preprint arXiv:2001.09592,
2020.

[57] M. Kosek, L. Blöcher, J. Rüth, T. Zimmermann, and O. Hohlfeld,
“Must, should, don’t care: TCP conformance in the wild,” in Passive
and Active Measurement: 21st International Conference, PAM 2020,
Eugene, Oregon, USA, March 30–31, 2020, Proceedings 21. Springer,
2020, pp. 122–138.

[58] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software
testing with large language models: Survey, landscape, and vision,” IEEE
Transactions on Software Engineering, 2024.

[59] D. Sammon, S. McCarthy, B. V. Thummadi, A. Wibisono, and
B. Fitzgerald, “Exploring the potential of large language models (LLMs)
for grounded theorizing: A human-in-the-loop configuration,” 2024.

[60] E. Mosqueira-Rey, E. Hernández-Pereira, D. Alonso-Rı́os, J. Bobes-
Bascarán, and Á. Fernández-Leal, “Human-in-the-loop machine learn-
ing: a state of the art,” Artificial Intelligence Review, vol. 56, no. 4, pp.
3005–3054, 2023.

[61] X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, and L. He, “A survey of
human-in-the-loop for machine learning,” Future Generation Computer
Systems, vol. 135, pp. 364–381, 2022.


