
Noninterference in a Predicative Polymorphic Calculus

for Access Control

Sepehr Amir-Mohammadiana, Mehran S. Fallaha

aDepartment of Computer Engineering and Information Technology,
Amirkabir University of Technology (Tehran Polytechnic),

P. O. Box: 15875-4413, Tehran, Iran

Abstract

Polymorphic programming languages have been adapted for constructing dis-
tributed access control systems, where a program represents a proof of eligi-
bility according to a given policy. As a security requirement, it is typically
stated that the programs of such languages should satisfy noninterference.
However, this property has not been defined and proven semantically. In this
paper, we first propose a semantics based on Henkin models for a predicative
polymorphic access control language based on lambda-calculus. A formal
semantic definition of noninterference is then proposed through logical rela-
tions. We prove a type soundness theorem which states that any well-typed
program of our language meets the noninterference property defined in this
paper. In this way, it is guaranteed that access requests from an entity do
not interfere with those from unrelated or more trusted entities.

Keywords: Access control, denotational semantics, noninterference,
predicative polymorphism.

1. Introduction

The use of programming languages theory in providing information se-
curity has long been recognized [33, 34]. The basic idea is to design a pro-
gramming language such that every system constructed using that language
provably satisfies given security requirements. Although the research in this

Email addresses: samirmoh@uvm.edu (Sepehr Amir-Mohammadian),
msfallah@aut.ac.ir (Mehran S. Fallah)

Preprint submitted to Computer Languages, Systems and Structures April 19, 2013

area has mainly focused on information confidentiality and integrity, the un-
derlying notion can also be utilized in providing authenticity, e.g., [20, 13],
service availability, e.g., [25, 42, 14], and even constructing secure access con-
trol systems, e.g., [16, 2, 15, 38, 35, 23]. When extended into access control,
it may take the form of presenting an appropriate static semantics for the
language so that its corresponding logic can reflect the intended policy. In
this view, the programs of the language are regarded as proofs of eligibility
and can be exploited in proof carrying authorization [8, 11].

A common approach to enforce confidentiality via programming lan-
guages theory is to build a variant of λ-calculus so that noninterference [19],
which is the basic semantic notion of secure information flow, is satisfied by
the terms of the calculus—the words calculus and language are used inter-
changeably throughout this paper. To achieve this, it is required to have a
lattice of security labels representing the sensitivity of the information related
to variables, terms, and even computations. The language is then so designed
that information flow from high (private) to low (public) is prohibited by the
type or run-time system. Integrity can be achieved in the same way where
the lattice of labels represents the integrity of information, and then, flow
from low (untrusted) to high (trusted) is prevented by the language.

A number of issues should be considered when noninterference is applied
to access control. First, the language should be equipped with richer types
handling specific relations between principals. For example, we need poly-
morphic types to formulate the assertions made about the relative power of
principals such as those employed to encode the delegation of rights [2]. This
necessitates a more complicated semantics, thereby complicating the study
of noninterference. Second, the concept of noninterference, as it is defined
in the realm of confidentiality, cannot be directly applied to the context of
access control—we have seen similar results stating that if confidentiality and
integrity are taken dual, some important facets will be ignored [27, 12].

If noninterference, as it is defined in confidentiality, is applied to a lan-
guage that is employed as a logic for access control, different proofs of the
same assertion made by an untrusted entity will have the same influence on
what is derived from the policy. Such a property, however, vacuously holds
in any logic, and thus, does reflect no specific feature of an access control
system. This is while noninterference in the context of access control should
guarantee that the policy will derive the same access rights in the presence
of different assertions by an untrusted entity. By such an interpretation, a
proof of an access right should not depend on any proof of any statement

2

by an untrusted entity. This is analogous to the interpretation of nonin-
terference in some constructive logics of access control [17] where the proof
theory of the logic is required to handle the assertions made by different
principals independently of each other. An attempt has been made in [2] to
bring this property into a calculus for access control based on Dependency
Core Calculus (DCC) [4]—DCC is a λ-calculus devised to enforce restrictions
on dependencies among computations through a lattice of monads [30, 40].
However, due to the lack of semantic treatment of the property, the soundness
of the language was not provable. In [6], noninterference for a logic of access
controls is studied in terms of the game semantics. This approach, however,
is limited to the monomorphic calculi of access control. As indicated earlier,
a more expressive language with richer types is required for access control.

This paper is an attempt to solve the problem stated above. In doing so,
we first introduce D∀P which is a predicative polymorphic calculus based on
[2]. Then, we propose a denotational semantics for the language using Henkin
models [28] and employ it to introduce a noninterference property reflecting
the features required for a secure access control system. As a type soundness
theorem, we prove that every well-typed program of D∀P satisfies noninter-
ference. Unlike impredicative polymorphic languages, a predicative one does
not allow the application of terms to polymorphic types. Our language does
not allow terms to be applied to terms of polymorphic types either. In this
way, we are able to propose a straightforward semantics for the language, and
consequently, to make the soundness of the language provable, but possibly
at the cost of expressiveness. It is also discussed how such a language may
make restrictions on what can be expressed as an access control policy.

It is worth noting that there are interesting works on languages with ac-
cess control constructs, e.g., [10, 35, 24, 37], where a noninterference property
can be defined and proven. In that line of research, access control policies
are embedded in the code of programs and it is guaranteed that, for example,
information flow from high to low does not occur when typable programs ex-
ecute. In the line of research we follow, however, the language itself—and not
a program—conveys what is required for access control. Put alternatively,
the language acts as an authorization logic. In such a case, every well-typed
program of the language can be thought of as a proof of eligibility. The non-
interference property, then, states that derivable access rights do not depend
on the statements made by untrusted entities.

The rest of this paper is organized as follows. Section 2 is on the signifi-
cance of noninterference in access control systems. In Section 3, we develop

3

a predicative polymorphic calculus for access control named D∀P . Section
4 gives a denotational semantics for the calculus based on Henkin models.
Section 5 defines noninterference formally on the basis of the semantics of
D∀P . Then, it is shown that any well-typed term of the calculus satisfies
noninterference. Section 6 is on the expressiveness of D∀P and Section 7
concludes the paper.

2. Noninterference and Access Control

Access control is, in general, the process of deciding whether or not a
request for a resource should be granted. The decisions made by an access
control system are based on the policy of the enterprise who intends to con-
trol access to its resources. Access control seems straightforward, though it is
error prone, especially in distributed and open environments where there are
diverse kinds of principals that perform a wide variety of operations. A prin-
cipal may be a client, a node on the network, a communication link, or even
a cryptographic key. Every principal may make requests for resources, dele-
gate its own rights to the other principals, confirm the credentials provided
by the others, and so on.

To manage complexities, modal logics have been proposed as a means for
the specification and enforcement of access control policies, e.g., [5, 8, 26,
1, 16, 17, 2, 15, 23, 21, 18]. The use of modal operators such as says helps
us abstract away the assertions made by principals from technical details
concerning the manner of processing a request, authenticating the requester,
and so on. In fact, a statement like A says σ indicates that the principal A
has made the assertion σ. The machinery of the logic can then be utilized
to reason about access requests efficiently in such a way that the resources
used for authorization can be minimized. In addition, the use of logic makes
it possible to verify an access control system formally.

In a logical view, access control lists can be represented by formulas like
A controls σ which is a syntactic sugar for (A says σ)→ σ. A partial order
relation, e.g., speaksfor, is also defined on the set of principals which specifies
if a principal is at least as powerful as the other. By such an interpretation,
A speaks for B implies that we can employ every assertion made by A to
validate B’s assertions. It is typical to express speaks for in terms of says
as follows:

A speaks for B = ∀σ. A says σ → B says σ.

4

One interesting way of implementing an access control system using logic
is to build a programming language whose static semantics conveys the logi-
cal requirements for access control. In fact, inspired from the Curry-Howard
isomorphism, authorization rules are represented by the typing rules of the
language. In this view, an access request is granted if it can be derived in the
logic. Equivalently, it is granted if, in the side of the corresponding program-
ming language, there is a program of the type of what is requested. Thus,
the principal having a request for a resource should provide the proof of its
eligibility in the form of a program. The enterprise who authorizes principals
then verifies the proof by type-checking that program. This approach has
many advantages. First, the semantics of the logic can be studied through
the massive work already done on the semantics of programming languages.
Second, to implement an access control system, we should only check the
proofs and it is not required to run a costly proof search.

The correctness of an access control system constructed in this way can
be formulated as satisfying a noninterference property by all programs of
the language. Noninterference, in general, states that high-level information
should not be revealed in lower levels. This notion of security has been incor-
porated into a number of languages, e.g., [39, 22, 9, 31, 41, 43]. When used
in the context of access control, an intuitive interpretation of noninterference
is that granting an access to a principal must not be influenced by the as-
sertions made by less trustworthy or unrelated principals. More formally, if
A is more trustworthy than B, any proof M of an A’s assertion, which relies
on a proof N of an assertion made by B, can be converted to a proof being
independent of N [2, 17].

The following example shows how the absence of this property may lead to
an undesirable behavior of an access control system. Assume that principal
A is more trusted than B and that

A controls σ, (1)

where
σ = (B says read[fileX])→ read[fileX].

Now, let M be a proof term of the statement A says σ. Furthermore, consider
the case in which M can be obtained from the proof term N of

B says read[fileX]. (2)

In such a case, the statement read[fileX] can be derived when B issues the
request represented by (2), i.e., there is a proof term N for (2). In fact, (2)

5

implies A says σ, due to the assumption that M is obtained from N . Then,
from (1) and A says σ, we have (B says read[fileX]) → read[fileX]. This
implies read[fileX]. In this way, a less trustworthy principal B interferes with
the decisions made by the access control system through the rights of a more
trusted principal A. Such malfunctions will be avoided if an access control
system enforces noninterference. In fact, noninterference is not satisfied in
this example because M is obtained from N . That is, a less trusted principal
interferes with the proofs of the assertions made by a more trusted one.

3. A Predicative Polymorphic Calculus for Access Control

We present D∀P , a calculus that can be employed as a means for the spec-
ification and enforcement of access control policies. Indeed, it is a monadic
predicative polymorphic language whose semantics enables us to define a
noninterference property reflecting what is required for access control. In
general, a type in a polymorphic language may have quantified type vari-
ables. The language is predicative because type application on quantified
types is not allowed. Moreover, terms cannot be applied to terms of univer-
sal types. To study such languages, it is conventional to define small and
large universes of types. The small universe, denoted by U1, comprises the
types with no quantified type variables, while the large universe, written U2,
consists of all types. The syntax of D∀P , as given in Figure 1, defines the
types and terms of the language in which t is a type variable, b is a base
type, and A is a principal.

Figure 2 defines the judgment Γ ` τ : u which states that the type
expression τ is in the universe u of types. In this figure, B is the set of base
types and L is a lattice of principals in which A � B means that A is more
trusted than B. The rule univ does not introduce a new type expression but
indicates that the large universe subsumes the small one. It is also worth
mentioning that a context Γ comprises a number of type variables associated
with their universes as well as term variables paired off with their types.
Moreover, in the rules defining Γ ` τ : u it is assumed that the context is
well-formed—for the sake of conciseness, we do not add this assumption to
the premises of the rules. The well-formedness of Γ is shown by � ` Γ and
is defined in Figure 3. The rule wfc2 states that well-formedness is closed
under adding a fresh type variable of the small universe—the freshness of t
is shown by t # Γ. The same holds for a fresh term variable x, as seen in
the rule wfc3.

6

τ ::= t | b | τ → τ | τ ∗ τ | τ + τ | A says τ | ∀t : U1. τ Types

M ::= 〈 〉 | zeroτ | x | λx : τ. M | MM | 〈M,M〉 | prji M | inji M Terms

| caseτ1,τ2,τ3MMM | let x⇐M in M | ηAM | Λt : U1. M | Mτ

Figure 1: Syntax of D∀P .

[base] Γ ` b : U1 (b ∈ B) [t-var] Γ, t : U1 ` t : U1

[func]
Γ ` τ1 : U1 Γ ` τ2 : U1

Γ ` τ1 → τ2 : U1
[prod]

Γ ` τ1 : Ui Γ ` τ2 : Ui i ∈ {1, 2}
Γ ` τ1 ∗ τ2 : Ui

[sum]
Γ ` τ1 : Ui Γ ` τ2 : Ui i ∈ {1, 2}

Γ ` τ1 + τ2 : Ui
[says]

Γ ` τ : Ui A ∈ L i ∈ {1, 2}
Γ ` A says τ : Ui

[univ]
Γ ` τ : U1

Γ ` τ : U2
[poly]

Γ, t : U1 ` τ : U2

Γ ` ∀t : U1. τ : U2

Figure 2: Type expressions and their corresponding universes.

[wfc1]
� ` ∅

[wfc2]
� ` Γ t # Γ

� ` Γ, t : U1
[wfc3]

Γ ` τ : Ui x # Γ

� ` Γ, x : τ

Figure 3: Well-formed contexts.

7

[pr1] π(unit, A) [pr2] π(null→ τ, A)

[pr3]
A � B

π(B says τ, A)
[pr4]

π(τ, A)

π(B says τ, A)

[pr5]
π(τ1, A) π(τ2, A)

π(τ1 ∗ τ2, A)
[pr6]

π(τ2, A)

π(τ1 → τ2, A)

[pr7]
∀τ1 : U1 . π([τ1/t]τ2, A)

π(∀t : U1.τ2, A)

Figure 4: Protection rules.

We also need to define protection at a given trust level. We may use the
judgment π(τ, A), defined in Figure 4, to state that the type τ is protected
at level A. When used in access control, each type is matched with a state-
ment of the corresponding logic—the Curry-Howard isomorphism. Thus,
protection can be interpreted in terms of the influence of a statement on a
particular level. More precisely, π(τ, A) ensures that the statement τ will
not influence the proof of the statements representing privileges of A. This
is akin to what is required for information integrity.

In D∀P , we have two distinguished base types unit and null. The base
type unit is equivalent to > in the side of logic, whereas null represents
falsehood ⊥. Thus, unit does not influence other proofs; it holds anywhere
vacuously. The same holds for the type null → τ . Other base types corre-
spond to the statements representing the final decisions made by an access
control system, e.g., “fileX is deleted.” Such base types may act as hypothe-
ses for the proof of other statements. Therefore, they are considered to be
protected at no level. The operator says is a type constructor that takes an
element A of lattice L and a type and returns a specific type that is pro-
tected at levels less than A. If principal B is less trusted than A, then what
B says should not influence the proof of statements representing access to
the objects controlled by A. In the case where principal B is not less trusted
than A, B says τ is protected at level A if τ is protected at the same. A
product type is protected at a level if both components are protected at that
level. A function type is protected as long as the return type is. Finally,
a polymorphic type is protected at a particular level if every type obtained
from replacing the type variable with a specific type is protected. Note that
sum types are not protected at any level, as they can influence what is more
trusted through injection tags [36].

8

[unit] Γ ` 〈 〉 : unit

[zero] Γ ` zeroτ : null→ τ

[var] Γ, x : τ ` x : τ

[abst]
Γ, x : τ1 `M : τ2 Γ ` τ1 : U1 Γ ` τ2 : U1

Γ ` λx : τ1. M : τ1 → τ2

[app]
Γ `M : τ1 → τ2 Γ ` N : τ1

Γ `MN : τ2

[pair]
Γ `M : τ1 Γ ` N : τ2

Γ ` 〈M,N〉 : τ1 ∗ τ2

[proj-i]
Γ `M : τ1 ∗ τ2 i ∈ {1, 2}

Γ ` prji M : τi

[inj-i]
Γ `M : τi i ∈ {1, 2}

Γ ` inji M : τ1 + τ2

[case]
Γ `M : τ1 + τ2 Γ ` N : τ1 → τ3 Γ ` P : τ2 → τ3

Γ ` caseτ1,τ2,τ3MNP : τ3

[unitM]
Γ `M : τ A ∈ L
Γ ` ηAM : A says τ

[bindM]
Γ `M : A says τ1 Γ, x : τ1 ` N : τ2 π(τ2, A)

Γ ` (let x⇐M in N) : τ2

[t-abst]
Γ, t : U1 `M : τ

Γ ` (Λt : U1. M) : (∀t : U1. τ)

[t-app]
Γ `M : (∀t : U1. τ1) Γ ` τ2 : U1

Γ `Mτ2 : [τ2/t]τ1

Figure 5: Typing rules.

The typing rules of D∀P are given in Figure 5. All rules other than
unitM and bindM are standard typing rules for a predicative polymorphic
λ-calculus. The rule unitM introduces the terms representing computations.
It is the same as the standard typing rule for a monadic calculus except that
the level of computation should be known in advance—A ∈ L. The rule
bindM is the binding rule for computations in which the protection judgment
appears as a premise.

9

4. Semantics

In this section, we propose a denotational semantics for D∀P using Henkin
models. It is based on classical set theory where a function type is interpreted
as the set of all mathematical functions from a specific domain to the co-
domain that is denoted by its return type.

The applicative structure for D∀P is defined to be the triple

A = 〈U , dom, {Appa,b,Appf ,Proja,b1 ,Proja,b2 , Inlefta,b, Inrighta,b,TA,a}〉,

where

1. U =
{
UA1 , U

A
2 ,→A,∀A, ∗A,+A, {TAA|A ∈ L}, Itype

}
in which

• UA1 and UA2 are two sets such that UA1 ⊆ UA2 and 0,1 ∈ UA1 ,

• →A: UA1 × UA1 → UA1 ,

• ∀A : [UA1 → UA2]→ UA2 , where [UA1 → UA2] = {f |f : UA1 → UA2 },
• ∗A : UA2 × UA2 → UA2 ,

• +A : UA2 × UA2 → UA2 ,

• TAA : UA2 → UA2 , and

• Itype : B → UA1 with Itype(null) = 0 and Itype(unit) = 1; Itype is
an injective function as well.

Throughout this paper, we will use→A, ∗A, and +A as infix operators.

2. dom = {Doma|a ∈ UA2 }, where Doma is a set of values for the type
value a ∈ UA2 ; Dom0 = {} and Dom1 = {>}, and

3. for {Appa,b,Appf ,Proja,b1 ,Proja,b2 , Inlefta,b, Inrighta,b,TA,a}, we have

• Appa,b : Doma→Ab → Doma → Domb for a, b ∈ UA1 ,

• Appf : Dom∀
A(f) → UA1 →

⋃
a∈UA2

Doma, where for every value

v ∈ Dom∀A(f) and every type value a ∈ UA1 , we have Appfv a ∈
Domf(a),

• Proja,b1 : Doma∗Ab → Doma for a, b ∈ UA2 ,

• Proja,b2 : Doma∗Ab → Domb for a, b ∈ UA2 ,

10

• Inlefta,b : Doma → Doma+Ab for a, b ∈ UA2 ,

• Inrighta,b : Domb → Doma+Ab for a, b ∈ UA2 , and

• TA,a : Doma → DomTAA(a) for a ∈ UA2 and A ∈ L.

The applicative structure A should be extensional. In addition to the
conditions stated in [28], this requires the following extra condition.

∀f, f ′ ∈ DomTAA(a)→b .∀d ∈ Doma .

AppT
A
A(a),bf(TA,ad) = AppT

A
A(a),bf ′(TA,ad)⇒ f = f ′.

Moreover, for the applicative structure A, the A-environment ν is defined
by

ν : V ar → UA1 ∪
⋃

a∈UA2

Doma,

where V ar is the set of variables. Then, for every type variable t, ν(t) ∈ UA1 .
We use ν[a/t] and ν[x 7→ a] to denote environments in which a particular
variable is mapped to a specific value. The environment ν[a/t] represents the
state in which t is mapped to the type value a. More formally,

ν[a/t](s) =

{
a, s = t

ν(s), s 6= t.

Similarly, the environment ν[x 7→ a] represents the state in which x is mapped
to the term value a.

Given an applicative structure A and an A-environment ν, the meaning
of a type expression τ , written JτKν , is defined by

• JtKν = ν(t) (t ∈ V ar),

• JbKν = Itype(b) (b ∈ B),

• Jτ → τ ′Kν = JτKν →A Jτ ′Kν ,

• Jτ ∗ τ ′Kν = JτKν ∗A Jτ ′Kν ,

• Jτ + τ ′Kν = JτKν +A Jτ ′Kν ,

• JA says τKν = TAA(JτKν), and

11

• J∀t : U1. τKν = ∀A(f) where f : UA1 → UA2 and f(a) = JτKν[a/t].

An environment ν satisfies a context Γ, written ν |= Γ, iff

x : τ ∈ Γ⇒ ν(x) ∈ DomJτKν .

We follow the meaning of term M of type τ in context Γ and context-
satisfying environment ν as defined in [28] and give meaning to the new
terms of D∀P by

JΓ ` ηAM : A says τKν = TA,aJΓ `M : τKν , (3)

and
JΓ ` (let x⇐M in N) : τ ′Kν = JΓ, x : τ ` N : τ ′Kν[x 7→d] (4)

in which a = JτKν , d ∈ Doma, and JΓ `M : A says τKν = TA,ad.
An extensional applicative structure A is a Henkin model if the meaning

function “J·K·” defined above is a total function.

Lemma 1. For any two type expressions τ and τ ′, any type variable t, and
any environment ν, J[τ ′/t]τKν = JτKν[Jτ ′Kν/t].

Proof. By induction on the structure of τ . �

Theorem 1. The meaning function “J·K·” is total.

Proof. By induction on the rules defining Γ `M : τ . �

5. Noninterference and Type Soundness

Noninterference is of great concern in distributed access control systems,
where there exist diverse kinds of requesting entities, access rights, and re-
quests. In such environments, it is significant to have trust in what is asserted
by a principal and the way an access permission is derived. A principal can
influence the derivation of an access permission through asserting those state-
ment formulated by says constructor in D∀P . Noninterference can then be
defined as a property requiring that untrusted principals may not influence
the derivation of access permissions for trusted principals.

To formalize this notion, we first consider the family of semantic relations

R = {Ra,a′

A ⊆ Doma ×Doma′ |a, a′ ∈ UA2 , A ∈ L}

12

which primarily represent the extent to which a principal trusts a compu-
tation or equivalently a proof. Rather than being indexed by a single type
value, which is usual in logical relations as well as in defining and analyzing
information flow properties, e.g., [22, 4], the relations here are defined over
two type values. This will facilitate the semantic interpretation of noninter-
ference in access control. In access control, we need to say that replacing
some statement τ from a principal with any other statement σ from the
same does not influence the proof of the statement originated from a more
trustworthy principal. Such a property cannot be expressed using semantic
relations on single type denotations where the proof of a statement can only
be substituted for another proof of the same statement. In fact, making
restrictions on replacing a proof of a statement with another proof of the
same statement does not reflect what is expected from noninterference in the
context of access control.

Our semantic relations are inductively defined in Table 1. If (v, v′) ∈ Ra,a′

A ,
then, in principal A’s view, v ∈ Doma is denoted by a proof term that can
be replaced with another proof term denoting v′ ∈ Doma′ . We explain the
relation Ra,a′

A through an example. Consider the type value a ∈ UA2 . If

principal A trusts a, Ra,a′

A = ∅ holds for any type value a′ ∈ UA2 other than a.
Put alternatively, in the side of the corresponding logic, A does discriminate
between a proof of a statement (type) with denotation a and a proof of a
statement with another denotation. However, if A does not trust a, then
Ra,a′

A = Doma × Doma′ holds for any type value a′ that is not trustworthy
to A. That is, A is indifferent between the proofs of the statement denoting
a and the ones of any untrusted statement denoting a′. From now on, we
say that the relation Ra,a′

A is complete if Ra,a′

A = Doma × Doma′ . Another
case of indifference for A would be when there exist two proofs for a single
statement, i.e., when a = a′. Indeed, what matters for the principal A is the
provability of the statement rather than what proof is associated with the
statement. Therefore, Ra,a

A would be complete as well.
The denotations of base types are assumed to be trustworthy to any

principal. Thus, for base types b, b′ ∈ B with JbKν 6= Jb′Kν′ the relation

R
JbKν ,Jb

′Kν′
A is empty. The relation for the base types of the same denotation

is complete. It should be noted that since the function Itype is injective, the
base types of the same denotation are the same. The relation concerning
the denotations of two function types comprises all pairs (f, f ′) that, in a
principal A’s vision, preserve closure with respect to R. That is, their return

13

Table 1: Definition of Ra,a
′

A .

R
JbKν ,Jb

′Kν′
A =

{
∅, b 6= b′

DomJbKν ×DomJb′Kν′ , b = b′
(b, b′ ∈ B)

R
Jτ→τ ′Kν ,Jσ→σ

′Kν′
A ={

(f, f ′) | f ∈ DomJτ→τ ′Kν ∧ f ′ ∈ DomJσ→σ′Kν′ ∧

∀(a, a′) ∈ RJτKν ,JσKν′
A . (AppJτKν ,Jτ

′Kν fa,AppJσKν′ ,Jσ
′Kν′ f ′a′) ∈ RJτ ′Kν ,Jσ

′Kν′
A

}
R

Jτ∗τ ′Kν ,Jσ∗σ
′Kν′

A ={
(p, p′) | p ∈ DomJτ∗τ ′Kν ∧ p′ ∈ DomJσ∗σ′Kν′ ∧ (Proj

JτKν ,Jτ
′Kν

1 p,Proj
JσKν′ ,Jσ

′Kν′
1 p′) ∈ RJτKν ,JσKν′

A ∧

(Proj
JτKν ,Jτ

′Kν
2 p,Proj

JσKν′ ,Jσ
′Kν′

2 p′) ∈ RJτ ′Kν ,Jσ
′Kν′

A

}
R

Jτ+τ ′Kν ,Jσ+σ
′Kν′

A ={
(InleftJτKν ,Jτ

′Kνa, InleftJσKν′ ,Jσ
′Kν′ a′) | a ∈ DomJτKν ∧ a′ ∈ DomJσKν′ ∧ (a, a′) ∈ RJτKν ,JσKν′

A

} ⋃{
(InrightJτKν ,Jτ

′Kνa, InrightJσKν′ ,Jσ
′Kν′ a′) | a ∈ DomJτ ′Kν ∧ a′ ∈ DomJσ′Kν′ ∧ (a, a′) ∈ RJτ ′Kν ,Jσ

′Kν′
A

}
R

JB says τKν ,JB says σKν′
A =

{{
(TB,JτKν

a,TB,JσKν′
a′) | (a, a′) ∈ RJτKν ,JσKν′

A

}
, B � A

DomJB says τKν ×DomJB says σKν′ , B � A

R
J∀t:U1. τKν ,J∀t:U1. σKν′
A ={

(f, f ′) | f ∈ DomJ∀t:U1. τKν ∧ f ′ ∈ DomJ∀t:U1. σKν′ ∧ ∀F, F ′ : UA1 → UA2 . ∀τ ′, σ′ ∈ U1 .(
F (z) = JτKν[z/t] ∧ F ′(z) = JσKν′[z/t]

)
→(

AppF fJτ ′Kν ,AppF
′
f ′Jσ′Kν′

)
∈ R

JτKν[Jτ′Kν/t],JσKν′[Jσ′K
ν′/t]

A

}
R

JτKν ,JσKν′
A = ∅, otherwise.

values are related for any pair of related input elements. In fact, in A’s
viewpoint, the λ-term denoting f can be replaced with the term denoting
f ′. For the denotations of product types, p is in relation with p′ if the terms
denoting the components of p can be replaced with the terms denoting the
components of p′. The denotations of two sum types are related if they are
the left or right injection of related denotations of respective types.

Principal A trusts the computations of type B says τ depending on B’s
trustworthiness in comparison with A’s. If A is less trustworthy than B, from
A’s viewpoint, the denotations of two computations at level B are related
provided the denotations of the terms on which computations are performed
are related. If A is not less trustworthy than B, any pair of values denoted
by computations at level B are related. Finally, the denotations of two
polymorphic types are in relation with each other in a principal’s vision if
the results of their application to the denotation of every type are related.

14

Theorem 2. Assume that Γ ` M : σ and ν, ν ′ |= Γ for two environments ν

and ν ′. If
(
ν(x), ν ′(x)

)
∈ RJτKν ,JτKν′

A for all x : τ ∈ Γ, then(
JΓ `M : σKν , JΓ `M : σKν′

)
∈ RJσKν ,JσKν′

A .

Proof. By induction on the typing rules given in Figure 5. Here, we sketch
the proof under the derivation by the rule t-app. In doing so, we assume
that the theorem holds for Γ ` M : ∀t : U1 . τ1 and then we prove it for
Γ ` Mτ2 : [τ2/t]τ1. If Γ ` Mτ2 : [τ2/t]τ1, ν, ν ′ |= Γ, and for all x : τ ∈ Γ,(
ν(x), ν ′(x)

)
∈ RJτKν ,JτKν′

A , then according to the induction hypothesis we have(
JΓ `M : ∀t : U1 . τ1Kν , JΓ `M : ∀t : U1 . τ1Kν′

)
∈ RJ∀t:U1 . τ1Kν ,J∀t:U1 . τ1Kν′

A .

Then, according to the definition of our logical relation over polymorphic
types in Table 1,(

AppF JΓ `M : ∀t : U1 . τ1Kνa,

AppF
′
JΓ `M : ∀t : U1 . τ1Kν′a

)
∈ RJτ1Kν[a/t],Jτ1Kν′[a/t]

A

holds for all a ∈ UA1 , where F and F ′ denote the functions that are used to
model the type ∀t : U1 . τ1 in ν and ν ′, respectively. Therefore, the above
pair could be formulated as the pair of denotations for Γ ` Mτ2 : [τ2/t]τ1 in
ν and ν ′. �

Now, we define noninterference in the context of access control as a prop-
erty to which principals cannot interfere with those requests made by more
trustworthy or unrelated principals. In doing so, first we define evalA as
follows:

evalA
def
= Λt : U1 . λz : A says t . let y ⇐ z in y.

The term evalA takes a type and a computation of that type in level A and
returns the result of the computation. It is worth noting that evalA can only
be applied to those types that are protected at level A.

Definition 1. A term N of type σ in context Γ, t : U1, x : t satisfies
noninterference iff for every two type expressions τ and τ ′ and every principal

15

A for which [τ/t]σ and [τ ′/t]σ are not protected at A and every two terms
M and M ′ of types A says τ and A says τ ′,(

JΓ ` N ′ τ (evalA τ M) : [τ/t]σKν ,

JΓ ` N ′ τ ′ (evalA τ ′ M ′) : [τ ′/t]σKν′
)
∈ RJ[τ/t]σKν ,J[τ ′/t]σKν′

C

holds for every two context-satisfying environments ν and ν ′ and every prin-
cipal C, where [τ/t]σ and [τ ′/t]σ are protected at C and

N ′ =
(
Λt : U1 . λx : t . N

)
:
(
∀t : U1 . t→ σ

)
.

The definition also implicitely assumes that evalA τ M and evalA τ
′ M ′ are

well-typed.

In a colloquial sense, a term N of type σ with free variable x satisfies
noninterference if, in every principal C’s view, it does not matter which
untrusted computation is substituted for x. Its logical interpretation is as
follows: if A is less trustworthy than C, the proof of σ does not depend on
a proof M of A says τ , and thus, M can be replaced with any proof M ′ of
any other statement A says τ ′.

In should be noted that our definition of a term satisfying noninterfer-
ence is reminiscent of Reynolds’ relational parametricity [32]. It states that
the clients of an abstract data type behave uniformly for all available inter-
pretations of that type and cannot depend on the way it is represented. A
useful application of relational parametricity is the notion of representation
independence [29, 7] which states that two different implementations of an
abstract type are equivalent if there is a relation between their type represen-
tations that is preserved by their operations. The semantics handling such
a relation between types may be represented by logical relations over pair of
type expressions.

Definition 2. We say that a language enforces noninterference, or is type-
sound, iff every well-typed term of that language satisfies noninterference.

Theorem 3. D∀P is type-sound.

Proof. There are two kinds of typable terms, those protected at some level
and those that are not protected at any level. For the terms of the second

16

kind, the proof is immediate, as the premise of the theorem does not hold.
For the terms that are protected at some level, we can use induction on
the protection rules given in Figure 4. More precisely, it is proven that the
property P , defined below, holds of π([τ/t]σ, C).

P (π([τ/t]σ, C)) =(
Γ, t : U1, x : t ` N : σ ∧ ¬π([τ/t]σ, A) ∧ ¬π([τ ′/t]σ, A)∧

Γ `M : A says τ ∧ Γ `M ′ : A says τ ′ ∧ π([τ/t]σ, C) ∧ π([τ ′/t]σ, C)∧

Γ ` evalA τ M : τ ∧ Γ ` evalA τ ′ M ′ : τ ′
)
⇒(

JΓ ` (Λt : U1 . λx : t . N) τ (evalA τ M) : [τ/t]σKν ,

JΓ ` (Λt : U1 . λx : t . N) τ ′ (evalA τ
′ M ′) : [τ ′/t]σKν′

)
∈ RJ[τ/t]σKν ,J[τ ′/t]σKν′

C .

By ¬π(σ, A), we mean σ is not protected at level A. We prove the property
over π(B says [τ/t]σ, C) here—other cases can be treated similarly. In doing
so, we use induction on the rules pr3 and pr4.

• Proof under derivation by the rule pr3: We show that if C � B then
P (π(B says [τ/t]σ, C)). The type B says [τ/t]σ is not protected at
level A. Therefore, according to pr3 and pr4, A � B and [τ/t]σ is
not protected at level A. Similarly, from ¬π(B says [τ ′/t]σ, A), it is
concluded that [τ ′/t]σ is not protected at level A. From C � B and
A � B, we have A � C. Now, we define d and d′ as d = JΓ ` M :
A says τKν and d′ = JΓ `M ′ : A says τ ′Kν′ . From A � C, we have

R
JA says τKν ,JA says τ ′Kν′
C = DomJA says τKν ×DomJA says τ ′Kν′ .

Hence,

(d, d′) ∈ RJA says τKν ,JA says τ ′Kν′
C . (5)

We also define f and f ′ as

f =
q
Γ, t : U1, y : A says t `
(Λs : U1 . λx : s .N) t (evalA t y) : B says σ

y
ν[JτKν/t][y 7→d]

,

f ′ =
q
Γ, t : U1, y : A says t `
(Λs : U1 . λx : s .N) t (evalA t y) : B says σ

y
ν′[Jτ ′Kν′/t][y 7→d′]

.

17

From ν
[
JτKν/t

][
y 7→ d

]
(y) = d, ν ′

[
Jτ ′Kν′/t

][
y 7→ d′

]
(y) = d′, and (5),(

ν
[
JτKν/t

][
y 7→ d

]
(y), ν ′

[
Jτ ′Kν′/t

][
y 7→ d′

]
(y)
)
∈ RJA says τKν ,JA says τ ′Kν′

C .

(6)
Moreover, according to Lemma 1, we know that

JA says τKν = JA says tKν[JτKν/t][y 7→d].

Thus, we can rewrite (6) as(
ν
[
JτKν/t

][
y 7→ d

]
(y),ν ′

[
Jτ ′Kν′/t

][
y 7→ d′

]
(y)
)

∈ R
JA says tKν[JτKν/t][y 7→d],JA says tKν′[Jτ ′Kν′/t][y 7→d′]
C .

(7)

From Theorem 2 and (7), it is concluded that

(f, f ′) ∈ R
JB says σKν[JτKν/t][y 7→d],JB says σKν′[Jτ ′Kν′/t][y 7→d]
C ,

which is equivalent to

(f, f ′) ∈ RJB says [τ/t]σKν ,JB says [τ ′/t]σKν′
C

using Lemma 1. Finally, it can be easily shown that

f = JΓ ` (Λt : U1 . λx : t . N) τ (evalA τ M) : B says [τ/t]σKν ,

and

f ′ = JΓ ` (Λt : U1 . λx : t . N) τ ′ (evalA τ
′M ′) : B says [τ ′/t]σKν′ .

• Proof under derivation by the rule pr4: If P (π([τ/t]σ, C)), we have
P (π(B says [τ/t]σ, C)). As with the proof for pr3, it is derived that
A � B and the type expressions [τ/t]σ and [τ ′/t]σ are not protected
at level A. Moreover, from π(B says [τ/t]σ, C), we have π([τ/t]σ, C).
As π(B says [τ ′/t]σ, C), at least one of the cases below holds.

1. C � B: The theorem has been proven for this case in the proof
for pr3.

18

2. π([τ ′/t]σ, C): The typing judgment Γ, t : U1, x : t ` N :
B says σ, through unitM in Figure 5, implies that there exists
a term N ′ of type σ with free variable x of type t such that
N = ηB N

′. Thus, from the induction hypothesis P (π([τ/t]σ, C)),
we have(

JΓ ` (Λt : U1 . λx : t . N ′) τ (evalA τ M) : [τ/t]σKν ,

JΓ ` (Λt : U1 . λx : t . N ′) τ ′ (evalA τ
′M ′) : [τ ′/t]σKν′

)
∈ RJ[τ/t]σKν ,J[τ ′/t]σKν′

C . (8)

Now, we consider the two cases B � C and B � C. For the
former,

R
JB says [τ/t]σKν ,JB says [τ ′/t]σKν′
C =DomJB says [τ/t]σKν×

DomJB says [τ ′/t]σKν′ ,

and thus, P (π(B says σ, C)) holds. For the latter, according to
(8), we have(

TB,J[τ/t]σKν

q
Γ ` (Λt : U1 . λx : A says t .N ′) τ (evalA τ M)

: [τ/t]σ
y
ν
,

TB,J[τ ′/t]σKν

q
Γ ` (Λt : U1 . λx : A says t .N ′) τ ′ (evalA τ

′M ′)

: [τ ′/t]σ
y
ν′

)
∈ RJB says [τ/t]σKν ,JB says [τ ′/t]σKν′

C .

Therefore, from (3),(q
Γ ` (Λt : U1 . λx : A says t .N) τ (evalA τ M)

: B says [τ/t]σ
y
ν
,

q
Γ ` (Λt : U1 . λx : A says t .N) τ ′ (evalA τ

′M ′)

: B says [τ ′/t]σ
y
ν′

)
∈ RJB says [τ/t]σKν ,JB says [τ ′/t]σKν′

C .

19

�

Now, reconsider the example given in Section 2. In that example, it is
assumed that there exists a proof M of A says σ if there is a proof N of
B says read[fileX]. It is also assumed that B is less trustworthy than A.
In what follows, it is shown that deriving M from N is not possible, or
equivalently, the term M is ill-typed. According to the typing rules given
in Figure 5, the only way to substitute a computation for a variable in a
term is the application of the rule bindM. In other words, to derive M of
type A says σ from N , N should be evaluated and substituted for some
placeholder in an another term such that the result of substitution is M .
This is not possible because A says σ is not protected at level B.

6. Discussion

In a predicative polymorphic language, it is not allowed to have type
variables ranging over polymorphic types. Such a language is less expressive
than the one with general polymorphism in which there is no restriction on
using type variables. Thus, a number of access control policies cannot be
stated in a predicative language. As seen in previous sections, instead, we
attain a well-defined semantics for the language, and consequently, we can
define and prove a noninterference property.

Such a restriction, in particular, influences the use of speaks for. The
expressiveness of D∀P is between simply-typed [4] and polymorphic [2] core
calculi of dependency. In D∀P , A speaks for B is defined as a syntactic
sugar for

∀t : U1. (A says t→ B says t). (9)

The above definition for speaks for differs from what stated in [2]. According
to (9), A speaks for B does not imply that B asserts all the statements
asserted by A; only monomorphic types (statements), i.e., the ones with
denotations in U1, appear in the definition. In general, D∀P excludes the
statements of the form ∀t. σ. As an example, it is not permitted to have

A says ∀t. (B says t→ σ),

where σ is an arbitrary predicate on t.
The abstraction of polymorphic term variables is not allowed either. This

avoids having terms like A speaks for B → σ where σ is an arbitrary

20

Table 2: Some validities and their corresponding proof terms.

Validity Statement Proof Term

Unit ∀t : U1. t→ A says t Λt : U1. λx : t. ηAx

Bind ∀t : U1. ∀s : U1. (t→ A says s)→
(A says t→ A says s)

Λt : U1. Λs : U1. λx : t→ A says s. λy :
A says t. x (let z ⇐ y in z)

Idempotence ∀t : U1. (A says A says t→ A says t) Λt : U1. λx : A says A says t. let y ⇐
x in y

Closure ∀t : U1. ∀s : U1. (A says (t→ s))→
((A says t)→ (A says s))

Λt : U1. Λs : U1. λx : A says (t→
s). let x′ ⇐ x in (λy :
A says t. let y′ ⇐ y in ηA(x′y′))

Comm ∀t : U1. A says B says t→
B says A says t

Λt : U1. λx : A says B says t. let y ⇐
x in (let z ⇐ y in ηB(ηAz))

(a)
N : B says read[fileX]→ A says read[fileX] ∆ : B says read[fileX]

N∆ : A says read[fileX]

(b)
M : A speaks for C read[fileX] : U1

M read[fileX] : A says read[fileX]→ C says read[fileX]

(c)
M read[fileX] : A says read[fileX]→ C says read[fileX] N∆ : A says read[fileX]

(M read[fileX])(N∆) : C says read[fileX]

(d)
P : C controls read[fileX] (M read[fileX])(N∆) : C says read[fileX]

P ((M read[fileX])(N∆)) : read[fileX]

Figure 6: Example derivation of an access right.

statement. Such a limitation removes the possibility of deduction on the basis
of the level of trust one may have in a principal. Thus, only part of group-
based, attribute-based, and role-based access control can be implemented
through our language (logic). This is due to the fact that these concepts are
expressed in terms of speaks for [5].

More generally, there is no program of type τ → σ in D∀P if there are
some polymorphic types in τ or σ. As another example, consider the “hand-
off axiom”

A says (B speaks for A)→ (B speaks for A).

This axiom cannot be stated in D∀P either. It is worth noting that hand-off
is in doubt because of granting permissions without any control, although it
has been used in several logics for access control.

21

Despite these restrictions, D∀P can still express many statements that
may be considered valid in access control. For example, Unit, Bind, Idempotence,
and Closure [3] have proof terms in D∀P . Moreover, commutativity of says
(Comm) and the rule Necessitation also hold in the language. These validi-
ties and their corresponding proof terms are given in Table 2. Note that
Necessitation corresponds to the typing rule unitM.

By an example, we show how an access right can be granted to a principal.
Suppose that A, B, and C are three principals in a system in which the
statements below hold; M , N , and P are assumed to be their proof terms.

M : A speaks for C

N : B says read[fileX]→ A says read[fileX]

P : C controls read[fileX]

From A speaks for C, we have ∀t : U1. A says t → C says t. Moreover,
C controls read[fileX] is equivalent to C says read[fileX] → read[fileX].
The statement read[fileX] is represented by a type of universe U1. Now,
consider B requests for a read permission on fileX; the proof term for this
request is ∆. Figure 6 shows how this request is granted, i.e., a proof term
for read[fileX] is derived in our language. Clearly, the conclusion of (b) is
the result of type application and the ones of (a), (c), and (d) are the result
of term application.

7. Conclusion

This paper proposes a predicative polymorphic calculus, and a corre-
sponding logic, for access control in distributed systems. We also define and
prove a noninterference property in this language. In fact, we provide a
semantic model for our language D∀P so that it can be proven that every
well-typed program of the language satisfies noninterference. The next step
in our research is to extend the results of this paper to a generic calculus of
dependency that supports impredicative polymorphism.

References

[1] Abadi, M.. Logic in access control. In: Proceedings of the 18th Annual
IEEE Symposium on Logic in Computer Science. 2003. p. 228–233.

22

[2] Abadi, M.. Access control in a core calculus of dependency. In: Proceed-
ings of the 11th ACM SIGPLAN International Conference on Functional
Programming. 2006. p. 263–273.

[3] Abadi, M.. Variations in access control logic. In: Proceedings of the 9th
International Conference on Deontic Logic in Computer Science. 2008.
p. 96–109.

[4] Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.. A core calculus
of dependency. In: Proceedings of the 26th Annual ACM Symposium
on Principles of Programming Languages. 1999. p. 147–160.

[5] Abadi, M., Burrows, M., Lampson, B.W., Plotkin, G.D.. A cal-
culus for access control in distributed systems. ACM Transactions on
Programming Languages and Systems 1993;15(4):706–734.

[6] Abramsky, S., Jagadeesan, R.. Game semantics for access control.
In: Proceedings of the 25th Conference on Mathematical Foundations
of Programming Semantics. 2009. p. 135–156.

[7] Ahmed, A., Dreyer, D., Rossberg, A.. State-dependent representation
independence. In: Proceedings of 36th ACM Symposium on Principles
of Programming Languages (POPL). 2009. p. 340–356.

[8] Appel, A.W., Felten, E.W.. Proof-carrying authentication. In: Pro-
ceedings of the 6th ACM Conference on Computer and Communications
Security. 1999. p. 52–62.

[9] Banerjee, A., Naumann, D.A.. Secure information flow and pointer
confinement in a Java-like language. In: Proceedings of 15th IEEE
Computer Security Foundations Workshop. 2002. p. 253–267.

[10] Banerjee, A., Naumann, D.A.. Stack-based access control and secure
information flow. Journal of Functional Programming 2005;15(2):131–
177.

[11] Bauer, L.. Access control for the Web via proof-carrying authorization.
Ph.D. thesis; Princeton University; 2003.

[12] Birgisson, A., Russo, A., Sabelfeld, A.. Unifying facets of informa-
tion integrity. In: Proceedings of the 6th International Conference on
Information Systems Security. 2010. p. 48–65.

23

[13] Bugliesi, M., Focardi, R., Maffei, M.. Dynamic types for authentica-
tion. Journal of Computer Security 2007;15(6):563–617.

[14] Chang, R.M., Jiang, G., Ivancic, F., Sankaranarayanan, S.,
Shmatikov, V.. Inputs of Coma: Static detection of denial-of-service
vulnerabilities. In: Proceedings of the 22nd IEEE Computer Security
Foundations Symposium. 2009. p. 186–199.

[15] Fournet, C., Gordon, A., Maffeis, S.. A type discipline for authoriza-
tion in distributed systems. In: Proceedings of the 20th IEEE Computer
Security Foundations Symposium. 2007. p. 31–48.

[16] Fournet, C., Gordon, A.D., Maffeis, S.. A type discipline for autho-
rization policies. In: Proceedings of the 14th European Symposium on
Programming. 2005. p. 141–156.

[17] Garg, D., Pfenning, F.. Non-interference in constructive authorization
logic. In: Proceedings of the 19th IEEE Computer Security Foundations
Workshop. 2006. p. 283–296.

[18] Genovese, V., Garg, D.. New modalities for access control logics:
Permission, control and ratification. In: Proceedings of the 7th Interna-
tional Workshop on Security and Trust Management. 2011. p. 56–71.

[19] Goguen, J.A., Meseguer, J.. Security policies and security models.
In: Proceedings of IEEE Symposium on Security and Privacy. 1982. p.
11–20.

[20] Gordon, A.D., Jeffrey, A.. Authenticity by typing for security proto-
cols. Journal of Computer Security 2003;11(4):451–520.

[21] Gurevich, Y., Neeman, I.. Logic of infons: The propositional case.
ACM Transactions on Computational Logic 2011;12(2):9.

[22] Heintze, N., Reicke, J.G.. The SLam calculus: Programming with
secrecy and integrity. In: Proceedings of the 25th Annual ACM Sym-
posium on Principles of Programming Languages. 1998. p. 365–377.

[23] Jia, L., Vaughan, J.A., Mazurak, K., Zhao, J., Zarko, L., Schorr,
J., Zdancewic, S.. AURA: A programming language for authorization
and audit. In: Proceeding of the 13th ACM SIGPLAN International
Conference on Functional Programming. 2008. p. 27–38.

24

[24] Jia, L., Zdancewic, S.. Encoding information flow in AURA. In: Pro-
ceedings of the 2009 Workshop on Programming Languages and Analysis
for Security. 2009. p. 17–29.

[25] Lafrance, S., Mullins, J.. Using admissible interference to detect de-
nial of service vulnerabilities. In: Proceedings of the 6th International
Workshop on Formal Methods. 2003. p. 1–19.

[26] Li, N., Grosof, B.N., Feigenbaum, J.. Delegation logic: A logic-
based approach to distributed authorization. ACM Transactions on
Information and System Security 2000;6(1):2003.

[27] Li, P., Mao, Y., Zdancewic, S.. Information integrity policies. In:
Proceedings of the Workshop on Formal Aspects in Security and Trust.
2003. p. 53–70.

[28] Mitchell, J.. Foundations for programming languages. MIT Press,
Cambridge, MA, USA, 1996.

[29] Mitchell, J.C.. Representation independence and data abstraction. In:
Proceedings of 13th ACM Symposium on Principles of Programming
Languages (POPL). 1986. p. 263–276.

[30] Moggi, E.. Notions of computation and monads. Information and
Computation 1991;93(1):55–92.

[31] Pottier, F., Simonet, V.. Information flow inference for ML. In:
Proceedings of 29th ACM Symposium on Principles of Programming
Languages (POPL). 2002. p. 319–330.

[32] Reynolds, J.C.. Types, abstraction and parametric polymorphism. In:
Mason, R.E.A., editor. Information Processing 83. Elsevier Science Pub-
lishers B. V. (North-Holland); 1983. p. 513–523.

[33] Sabelfeld, A., Myers, A.C.. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications 2003;21(1):5–19.

[34] Schneider, F.B., Morrisett, J.G., Harper, R.. A language-based ap-
proach to security. In: Informatics. 2001. p. 86–101.

25

[35] Swamy, N., Corcoran, B.J., Hicks, M.. FABLE: A language for enforc-
ing user-defined security policies. In: Proceedings of IEEE Symposium
on Security and Privacy. 2008. p. 369–383.

[36] Tse, S., Zdancewic, S.. Translating dependency into parametricity.
In: Proceedings of the 9th ACM SIGPLAN International Conference on
Functional Programming. 2004. p. 115–125.

[37] Vaughan, J.A.. AuraConf: A unified approach to authorization and
confidentiality. In: Proceedings of 2011 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation. 2011. p.
45–58.

[38] Vaughan, J.A., Jia, L., Mazurak, K., Zdancewic, S.. Evidence-based
audit. In: Proceedings of the 21st IEEE Computer Security Foundations
Symposium. 2008. p. 177–191.

[39] Volpano, D., Smith, G., Irvine, C.. A sound type system for secure
flow analysis. Journal of Computer Security 1996;4(2-3):167–187.

[40] Wadler, P.. Monads for functional programming. In: Advanced Func-
tional Programming. 1995. p. 24–52.

[41] Zdancewic, S., Myers, A.C.. Secure information flow via linear continu-
ations. Higher Order and Symbolic Computation 2002;15(2-3):209–237.

[42] Zheng, L., Myers, A.C.. End-to-end availability policies and noninter-
ference. In: Proceedings of 18th IEEE Computer Security Foundations
Workshop. 2005. p. 272–286.

[43] Zheng, L., Myers, A.C.. Dynamic security labels and static information
flow control. International Journal of Information Security 2007;6(2):67–
84.

26

