
A Semantic Framework for Direct Information Flows
in Hybrid-Dynamic Systems

Sepehr Amir-Mohammadian

University of the Pacific

Stockton, California

samirmohammadian@pacific.edu

ABSTRACT
Hybrid-dynamic models provide an underlying framework to study

the evergrowing cyber-physical systems with an emphasis on the

integration of their discrete computational steps and the associated

continuous physical dynamics. Ubiquity of cyber-physical systems

necessitates some level of assurance about the secure flow of infor-

mation through different discrete and continuous components. In

recent years, different logical frameworks have been proposed to

analyze indirect information flows in cyber-physical systems.While

these frameworks are used to verify secure flow of information in

a metalevel, they naturally fall short in support of implementing

information flow analyzers that could effectively enforce policies at

runtime. This practical limitation has triggered the implementation

of direct information flow analyzers in different language settings.

In this paper, we focus on direct flows of information confiden-

tiality in hybrid-dynamic environments and propose a semantic

framework through which we can judge about such flows. This

semantic framework can be used to study the correctness of en-

forced policies by these analyzers, and in particular taint tracking

tools. In this regard, we specify a dynamic taint tracking policy

for hybrid dynamic systems and prove its soundness based on the

proposed semantic framework. As a case study, we consider the

flow of information in a public transportation control system, and

the effectiveness of our enforced policy on this system.

KEYWORDS
Cyber-physical systems, information flows, semantics, security

ACM Reference Format:
Sepehr Amir-Mohammadian. 2018. A Semantic Framework for Direct Infor-

mation Flows in Hybrid-Dynamic Systems. In CPSS 2021: 7th ACM Cyber-
Physical System Security Workshop. June 7th, 2021. Hong Kong, China. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
In today’s world, smartening mundane electro-mechanical machin-

ery with computational capabilities has broaden their applicability

and improved their services. These systems are known as hybrid

or cyber-physical systems (CPSs). Enhanced usability of CPSs has

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CPSS 2021, June 7th, 2021, Hong Kong, China
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

made them ubiquitous. Examples abound, e.g., in medical devices,

home and office appliances, transportation systems, smart grids,

etc. This is specially important for critical scenarios, where the

safety and security of users and/or assets play significant roles, and

necessitate some level of correct behavior assurance and resistance

against malicious operations.

In order to study the correctness of CPSs, different formal models

have been proposed, using automata theory [3, 21], process alge-

bras [12, 19, 25–27], and hybrid-dynamic models [6, 33, 34]. The

latter approach to formalization is through programming languages

techniques, where the CPS behavior is specified in terms of a hy-

brid program (HP). Hybridity of an HP refers to the coexistence

of the discrete nature of computation and the continuous physical

dynamics of a CPS. HPs provide a core programming language

for CPSs through which the syntax and semantics of integrated

discrete and continuous dynamics is specified. Secure behavior

of an HP relies on protecting the flow of information while HP

executes. Information flow is already studied in terms of CPS for-

malizations other than hybrid-dynamic models, e.g., [20, 28, 47].

These studies model physical aspects of CPSs discretely, and thus

do not reflect on the true nature of these systems wrt physical

continuously-changing quantities at runtime which may be visible

to low-level users (attackers). Therefore, in this work we focus on

hybrid-dynamic models of CPSs.

In the realm of discrete programs, the semantics of information

flow analysis has been well-studied. General flows of information

capture both direct and indirect flows. Indirect flows refer to the

implicit flows of information through the control structure of the

program, e.g., using conditional branches. Direct flows concentrate

only on explicit information flows, through assignments and pa-

rameter passing for example, and ignore the implicit ones.

It has been shown that the policies associated with the direct and

indirect flows of information confidentiality do not induce compa-

rable properties, i.e., neither subsumes the other [37, 38]. There are

both programs with direct leakage of secret data to public domain

while considered secure based on indirect information flow policies,

and programs without such direct leakages that are identified as

insecure wrt the same indirect information flow policies. The direct

flow of data confidentiality is characterized by a property called

explicit secrecy [38]. This property is a semantic framework that is

used to specify the notion of correctness for different taint trackers

associated with sequential discrete programs.

While there is a rich body of research on the analysis of informa-

tion flows in discrete programs, less work has been done to study

HPs in this respect. A recent contribution in this realm is by Bohrer

et al. [7], which provides a logical framework to study indirect flows

in hybrid-dynamic systems. However, implementation of indirect

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CPSS 2021, June 7th, 2021, Hong Kong, China Sepehr Amir-Mohammadian

flow analysis remains challenging in different language settings

[36]. This is due to the fact that general flows of information are typ-

ically characterized by different flavors of noninterference and/or

nondeducibility hyperproperties [11], and thus are not enforceable

on single traces of execution. Therefore for practical reasons, we

are interested in information flow policies that are restricted to

direct flows only. For example, taint tracking has been appealingly

effective in identifying direct flows, and consequently incorporated

in several programming languages, e.g., in C/C++ [39, 43], Java

[5, 23], Javascript [41, 48], and WebAssembly [18, 45].

In this paper, we aim to study the semantics of direct information

flows for HPs that underlie CPSs. The proposed semantic framework

would then facilitate the study of taint tracking policies for CPSs.

1.1 Contributions
Our contribution is three-fold: 1) First, we demonstrate a semantic

framework for direct information flows, general enough to support

discrete programs as well as HPs. Earlier work on explicit secrecy

restrict the model to structural operational semantics of sequential

discrete programs, which is specified formally for deterministic

behavior of these programs. HPs cannot be specified neither opera-

tionally, nor deterministically due to their hybrid-dynamic nature

and the support for continuous programs (reviewed in Section 3).

Alternatively, our proposed framework supports denotational and

nondeterministic semantics to capture direct flows of information,

which is compatible with the nature of HPs’ runtime model. 2)

Moreover, we specify a sample taint tracking policy for hybrid-

dynamic systems that is being enforced at runtime. We prove that

the policy is correct wrt our proposed semantic framework for

direct information flows, i.e., the enforced dynamic taint tracking

policy avoids direct leakage of information from secret domain to

public, as long as it satisfies the proposed semantic property. 3)

Finally, as an illustrative example, we explore direct information

flows in a public transportation control system using our semantic

framework, and study whether the enforcement of the sample taint

tracking policy protects this system. This enables us to identify the

information flows through discrete vs. continuous components of

the system at runtime.

1.2 Threat Model
Our specification of semantic framework is defined wrt data con-

fidentiality. We assume that the attacker is able to observe the

runtime behavior of the HP, and has access to memory regions cor-

responding to low confidentiality, but does not have direct access to

high confidentiality parts of memory. We also assume that low con-

fidentiality users provide low confidentiality data. We only consider

taint for data and data containers and not for code that could be

executed as part of the main program. Since this work is focusing

on direct information flows, there is an implicit assumption that

indirect flows are not being exploited. Moreover, program modifi-

cation and tracking data trustworthiness are out of scope of this

work, as they align with data integrity rather than confidentiality.

1.3 A Motivating Example
In this section, a motivating example is given that illustrates the

necessity of studying direct flows in hybrid-dynamic environments.

We will revisit this example later in the paper (in Sections 4 and 5) to

explain the effectiveness of our formal framework. For this purpose,

consider the European Train Control System (ETCS) [13], which

can be specified abstractly as a hybrid program [32, 33]. ETCS is a

system to manage train commutes. It aims to use the underlying

transportation infrastructure more efficiently by sharing the tracks

among the commuting trains. This necessitates that the trains do

not clash. To this end, a train needs to request and receive permis-

sions for specific blocks of the tracks from certain agents called

Radio Block Controllers (RBCs). RBCs grant a block to a train ac-

cording to the current state of the requested track, the requesting

train, as well as the state of other traveling trains. A train needs to

negotiate with RBCs for a block extension before reaching to the

end of the permitted block. To avoid clashes, a train starts to de-

crease its speed within a certain distance from that endpoint, while

attempting to negotiate for extensions. In the extreme case, the train

may stop and wait for the extension to be granted. ETCS can be ab-

stracted as a hybrid-dynamic system with discrete and continuous

components. Discrete dynamics refer to controlling operations, e.g.,

commanding the train to change the acceleration, or initializing

the negotiation phase with an RBC. Continuous dynamics refer to

the physical behavior of the train specified in terms of its position,

speed, acceleration, etc. A low-confidentiality user of this system

can compute these physical parameters in realtime, e.g., through

third-party tracking devices. Therefore, it is reasonable to assume

these parameters to be public. On the other hand, let’s assume that

controlling parameters are potentially secret information, e.g., as

part of protecting the intellectual property. In this paper, we are

proposing a framework by which we can study whether such secret

information are directly being leaked to the public domain, and

whether a direct information flow analyzer prevents such flows.

1.4 Paper Outline
The rest of the paper is organized as follows. In Section 2, we

propose the semantic framework for direct information flows that

can potentially support HPs. In Section 3, we review the syntax

and semantics of HPs, and then instantiate the semantic framework

for HPs. Section 4 provides an illustrative example of applying the

proposed semantic framework on ETCS transportation system to

identify insecure direct information flows. In Section 5, we specify

a typical dynamic tainting policy for HPs, and prove its soundness

based on our semantic framework. Section 6 reviews the related

work, and Section 7 concludes the paper and specifies the potential

future work.

2 A NONDETERMINISTIC & DENOTATIONAL
MODEL OF DIRECT FLOWS

In this section, we define the semantics of direct flow of information

confidentiality, inspired by Schoepe et al. [38]. Our formulation is

different in two respects: 1) It is supporting nondeterminism, and

2) it is specified denotationally rather than operationally. These

features enable us to discuss direct information flows in a more gen-

eral context, where the flows can be tracked in discrete programs as

well as a combination of discrete and continuous programs, i.e., in

hybrid-dynamic systems. Naturally, flow of information integrity

can be defined as a dual of the specified semantic framework, and

2

A Semantic Framework for Direct Information Flows
in Hybrid-Dynamic Systems CPSS 2021, June 7th, 2021, Hong Kong, China

thus we restrict our specification to flow of information confiden-

tiality.

Let V be the countably infinite set of variables, and lower-case

alphabetic characters (e.g., 𝑥, ℎ, 𝑙 ∈ V) range over them. Let S
denote the set of states, and 𝜔 ∈ S range over states. A state 𝜔 is

a mapping from V to values. We deliberately consider the set of

values under-specified at this stage. In Section 3.1 we instantiate it

with a concrete set for HPs. Let O be the set of observable data, and

𝜎 ∈ O∗
range over sequence of observable data including empty

sequence 𝜀. Observable data denote the information that may be

leaked to a user with a certain security clearance.

We posit 𝔭 to range over programs, and its denotation to be

defined as a relation J𝔭K over S × S and O∗
(potentially among

other sets). That is, a program is interpreted as a relation specify-

ing the reachability between two states, along with the generated

observable data. We define J𝔭K𝜔 as the set of pairs (𝜔 ′, 𝜎) where
𝜔 ′

is reachable by running 𝔭 from 𝜔 , and 𝜎 is observed.

State transformer is a function that is defined for each program

describing how that program changes the state as well as what

observable data are generated. In what follows, we deliberately

under-specify state transformers using the denotation of programs.

In Section 3.2, we instantiate this definition for HPs.

Definition 2.1 (State Transformer). State transformer of program

𝔭 in state 𝜔0 is some function 𝑓𝔭,𝜔0
: S → P(S × O∗) that speci-

fies how a state is changed by 𝔭 if it was 𝜔0. It also specifies the

observables if 𝔭 is executed.

We may drop program and state annotations from state trans-

formers for the sake of brevity. Let 𝑓 and 𝑔 range over them. In the

following we define the composition of state transformers. This

notion is employed to define the semantics of sequence of HPs in

Section 3.2.

Definition 2.2 (Composition of two state transformers). Compo-

sition of two state transformers 𝑓 and 𝑔, 𝑔 ⊙ 𝑓 , is defined as (𝑔 ⊙
𝑓) (𝜔) = {(𝜔 ′, 𝜎) | ∃𝜔0, 𝜎0, 𝜎1 .(𝜔0, 𝜎0) ∈ 𝑓 (𝜔), (𝜔 ′, 𝜎1) ∈ 𝑔(𝜔0), 𝜎 =

𝜎0𝜎1}.

Let (L, ⪯,⊔) be the lattice of security levels including at least

two levels L and H denoting public and secret levels, i.e., L ⪯
H. These two levels are the infimum and supremum of L, resp.

⊔ is the join operator on L. Assume that lev : V → L is the

function that returns the security level of a variable. Two states

are low-equivalent if they map public variables to identical values.

Throughout the paper, we assume that 𝑙 and ℎ are public and secret

variables, resp., i.e., lev(𝑙) = L and lev(ℎ) = H.

Definition 2.3 (Low equivalence). Two states 𝜔 and 𝜔 ′
are low

equivalent, denoted by 𝜔 =L 𝜔 ′
, iff for any 𝑥 , lev(𝑥) = L implies

𝜔 (𝑥) = 𝜔 ′(𝑥).

Let Sinit (𝔭) ⊆ S be the set of all states that can be considered as

initial states for program𝔭, i.e.,Sinit (𝔭) is the set of valid states from
which 𝔭 executes. This set can be defined differently for different

language settings. Let 𝜋𝑖 be the projection function on set of tuples,

returning the set of 𝑖th elements of each tuple.

Explicit knowledge is the set of initial states configurable by

a low level user (attacker) that generate a particular sequence of

observables following the execution that a given state transformer

specifies and according to a given initial state of a program. In other

words, explicit knowledge is the set of all imaginable initial states

by an attacker after observing the execution starting from a given

initial state. The smaller this set is, the greater is the knowledge of

the attacker.

Definition 2.4 (Explicit Knowledge). Explicit knowledge wrt pro-
gram 𝔭, initial state 𝜔 and state transformer 𝑓 is defined as

ke (𝔭, 𝜔, 𝑓) = {𝜔 ′ |𝜔 =L 𝜔 ′, 𝜔 ′ ∈ Sinit (𝔭), 𝜋2 (𝑓 (𝜔)) = 𝜋2 (𝑓 (𝜔 ′))}.

A program enjoys explicit secrecy if the execution specified by

its state transformer does not affect the knowledge of the attacker,

i.e., all low-equivalent states are still conceivable after running

the program. By quantifying on all possible initial states, indirect

information flows are ignored. Example 3.2 shows the effect of this

quantification after instantiating the framework for HPs.

Definition 2.5 (Explicit Secrecy). Program 𝔭 satisfies explicit se-

crecy in state 𝜔0, denoted by ES ⊨ 𝔭, 𝜔0 , iff for any 𝜔 ∈ Sinit (𝔭),
ke (𝔭, 𝜔, 𝑓𝔭,𝜔0

) = ke (𝔭, 𝜔, 𝑔), where 𝑔 is defined as 𝑔 : �̂� ↦→ {(�̂�, 𝜀)}.
Program 𝔭 satisfies explicit secrecy, denoted by ES ⊨ 𝔭, iff for

any arbitrary state 𝜔0, we have ES ⊨ 𝔭, 𝜔0 .

Explicit secrecy is the semantic framework which paves the

way to study trackers of direct information flows and in particular,

dynamic taint trackers. In this regard, let 𝜏 : V → L be the dynamic

taint function that returns the security level of a variable in a given

state. Let the set of all dynamic taint functions be T . We extend the

denotation of program 𝔭 to J𝔭K𝑇 ⊆ S ×T ×S ×T ×O∗
to capture

a dynamic tainting policy, i.e., the relation (𝜔1, 𝜏1, 𝜔2, 𝜏2, 𝜎) ∈ J𝔭K𝑇
specifies that if 𝔭 is executed in state 𝜔1, and 𝜏1 stores the taint of

variables in that state, then the resulting state would be 𝜔2, and

the taint of variables would change to 𝜏2. Moreover, 𝜎 would be

observed through the execution of 𝔭.

Using the notion of explicit secrecy, the soundness of the dy-

namic tainting policy J𝔭K𝑇 can be defined. Intuitively, a dynamic

tainting policy is sound iff that tainting policy allows execution,

only if explicit secrecy is satisfied.

Definition 2.6 (Soundness of Dynamic Tainting). Let 𝔭 be a pro-

gram. Dynamic tainting policy J𝔭K𝑇 is sound iff for any state

𝜔 ∈ Sinit (𝔭) and any initial dynamic taint function 𝜏init , the ex-

istence of some 𝜔 ′
, 𝜏 , and 𝜎 such that (𝜔, 𝜏init , 𝜔 ′, 𝜏, 𝜎) ∈ J𝔭K𝑇

implies ES ⊨ 𝔭, 𝜔 .

In other words, soundness of J𝔭K𝑇 means that if𝔭 does not satisfy

explicit secrecy in a given initial state𝜔 and dynamic taint function

𝜏init , then 𝔭 is not allowed to run.

Similar to Schoepe et. al [38], we may relax the model in support

of information declassification, using gradual release [4]. Let R be

the set of release events, i.e., the events whose observance do not

affect attacker knowledge. In other words,R is the set of declassified

information, and thus their leakage to the attacker is not considered

as security breaches. Moreover, let’s denote the 𝑖th observable in

sequence 𝜎 with 𝜎 (𝑖)
.

Definition 2.7 (Explicit Secrecy Modulo Release). Program 𝔭 satis-

fies explicit secrecy modulo release iff for any states 𝜔0, 𝜔 and 𝜔 ′
,

and observables 𝜎 , if 𝜔 ∈ Sinit (𝔭), (𝜔 ′, 𝜎) ∈ 𝑓𝔭,𝜔0
(𝜔), and for all 𝑖

we have 𝜎 (𝑖) ∉ R, then ES ⊨ 𝔭, 𝜔0 .

3

CPSS 2021, June 7th, 2021, Hong Kong, China Sepehr Amir-Mohammadian

𝜔J𝑥K = 𝜔 (𝑥) 𝜔J𝑐K = 𝑐 𝜔J𝑒.𝑒′K = 𝜔J𝑒K.𝜔J𝑒′K

𝜔J𝑒 + 𝑒′K = 𝜔J𝑒K +𝜔J𝑒′K
𝜔J𝑒K = J𝑒′K
𝜔 ⊨ 𝑒 = 𝑒′

𝜔J𝑒K ≥ J𝑒′K
𝜔 ⊨ 𝑒 ≥ 𝑒′

𝜔 ̸⊨ 𝑃
𝜔 ⊨ ¬𝑃

𝜔 ⊨ 𝑃 𝜔 ⊨ 𝑃 ′

𝜔 ⊨ 𝑃 ∧ 𝑃 ′
∃𝑟 ∈ R.𝜔 [𝑥 ↦→ 𝑟] ⊨ 𝑃

𝜔 ⊨ ∃𝑥𝑃

U1

𝜔′ = 𝜔 [𝑥 ↦→ 𝜔J𝑒K] lev (𝑥) = L ⇒ 𝜎 = [𝜔J𝑒K] lev (𝑥) ≠ L ⇒ 𝜎 = 𝜀

(𝜔,𝜔′, 𝜎) ∈ J𝑥 := 𝑒K𝑈

U2

∃𝑟 ∈ R.
(
(𝜔′ = 𝜔 [𝑥 ↦→ 𝑟]) ∧ (lev (𝑥) = L ⇒ 𝜎 = [𝑟]) ∧ (lev (𝑥) ≠ L ⇒ 𝜎 = 𝜀)

)
(𝜔,𝜔′, 𝜎) ∈ J𝑥 := ∗K𝑈

U3

𝜔 ⊨ 𝑃

(𝜔,𝜔, 𝜀) ∈ J?𝑃K𝑈

U4

∃𝑟 ≥ 0, 𝜑 : [0, 𝑟] → S.
(
(𝜑 solves 𝑥 ′ = 𝑒 on [0, 𝑟]) ∧ (∀𝑡 ∈ [0, 𝑟] .𝜑 (𝑡) ⊨ 𝑃)∧

(lev (𝑥) = L ⇒ 𝜎 = [𝜑 (𝑟) (𝑥)]) ∧ (lev (𝑥) ≠ L ⇒ 𝜎 = 𝜀)
)

(𝜑 (0), 𝜑 (𝑟), 𝜎) ∈ J𝑥 ′ = 𝑒 & 𝑃K𝑈

U5

(𝜔,𝜔′, 𝜎) ∈ J𝛼𝑖K𝑈 𝑖 = 1, 2

(𝜔,𝜔′, 𝜎) ∈ J𝛼1 ∪ 𝛼2K𝑈

U6

∃𝜔0, 𝜎0, 𝜎1 .((𝜔,𝜔0, 𝜎0) ∈ J𝛼K𝑈 ∧ (𝜔0, 𝜔
′, 𝜎1) ∈ J𝛽K𝑈 ∧ 𝜎 = 𝜎0𝜎1)

(𝜔,𝜔′, 𝜎) ∈ J𝛼 ; 𝛽K𝑈

U7

(𝜔,𝜔′, 𝜎) ∈ ∪𝑛∈NJ𝛼𝑛K𝑈
(𝜔,𝜔′, 𝜎) ∈ J𝛼∗K𝑈

Figure 1: Semantics of 1) polynomial terms: 𝜔J𝑒K, 2) FOL of
real arithmetic: 𝜔 ⊨ 𝑃 , and 3) HPs: J𝛼K𝑈 .

3 EXPLICIT SECRECY IN HYBRID-DYNAMIC
SYSTEMS

In this section, we first review the syntax and semantics of HPs.

Next, we instantiate the semantic framework (described in Section

2) for HPs.

3.1 Syntax and Semantics
The syntax and semantics of HPs [33, 35] relies on real arithmetic

polynomial terms and first-order logic (FOL) of real arithmetic.

3.1.1 Polynomial terms.

Syntax. Polynomial terms 𝑒 with rational coefficients are defined

as 𝑒 ::= 𝑥 | 𝑐 | 𝑒.𝑒 | 𝑒 + 𝑒, where 𝑥 ∈ V and 𝑐 ∈ Q.

Semantics. Let S be the set of states defined as maps from vari-

ables to real numbers, i.e., 𝜔 : V → R. The semantics of a poly-

nomial term 𝑒 is defined given a state 𝜔 in Figure 1, denoted by

𝜔J𝑒K.

3.1.2 FOL of real arithmetic.

Syntax. FOL of real arithmetic is defined syntactically by

𝑃 ::= 𝑒 = 𝑒 | 𝑒 ≥ 𝑒 | ¬𝑃 | 𝑃 ∧ 𝑃 | ∃𝑥𝑃 .

Other syntactic structures including true, false, disjunction, impli-

cation, bidirectional implication, universal quantification, less than,

greater than, etc. can be defined using this minimal syntax.

Semantics. State 𝜔 models predicate 𝑃 , denoted by 𝜔 ⊨ 𝑃 , ac-
cording to the definition in Figure 1. Satisfiability and validity

can be defined straightforwardly, using 𝜔 ⊨ 𝑃 relation. We define

J𝑃K = {𝜔 | 𝜔 ⊨ 𝑃}.

3.1.3 Hybrid Programs.

Syntax. Hybrid programs are defined syntactically as follows:

𝛼 ::= 𝑥 := 𝑒 | 𝑥 := ∗ | ?𝑃 | 𝑥 ′ = 𝑒 & 𝑃 | 𝛼 ∪ 𝛼 | 𝛼 ;𝛼 | 𝛼∗ .
𝑥 := 𝑒 updates 𝑥 to the value of 𝑒 . 𝑥 := ∗ updates 𝑥 to a nonde-

terministic value. ?𝑃 is a test (with boolean result). 𝑥 ′ = 𝑒 & 𝑃

is a continuous program specified in terms of an ordinary differ-

ential equation 𝑥 ′ = 𝑒 along with an evolution domain 𝑃 . 𝑥 ′ de-
notes the time derivative of 𝑥 . Indeed, continuous programs are

in explicit form, i.e., derivatives do not occur in 𝑒 and 𝑃 . To sim-

plify the specification of continuous programs, we consider only

polynomial differential equations, as syntactically given in 𝑥 ′ = 𝑒 .

Moreover, we implicitly assume that in general, a continuous pro-

gram may consist of a vector of differential equations of the form

𝑥 ′
1
= 𝑒1, 𝑥

′
2
= 𝑒2, · · · , 𝑥 ′𝑛 = 𝑒𝑛 & 𝑃 . We use 𝛼 ∪ 𝛼 for the nondeter-

ministic choice between two HPs. 𝛼 ;𝛼 is a sequence of two HPs.

Finally, 𝛼∗ is the iteration of HP 𝛼 for nondeterministic number of

times.

Semantics. Let lattice of security levels L to include at least two

levels L and H, and lev be instantiated for HPs, i.e., for any variable

𝑥 , lev(𝑥) is defined. J𝛼K𝑈 ⊆ S × S × R∗ is the denotation of 𝛼 ,

defined in Figure 1. Note that in the style of Volpano’s weak secrecy

[46], in case a public variable is updated, that event is visible to the

low-confidentiality user in our system. More specifically, 𝑥 := 𝑒 ,

𝑥 := ∗, and 𝑥 ′ = 𝑒 & 𝑃 generate nontrivial observables if lev(𝑥) = L.

According to rule U1, 𝑥 := 𝑒 updates the state 𝜔 , where 𝑥 is

mapped to the value of 𝑒 in 𝜔 . Moreover, if 𝑥 is public, the value

is observed by the low-level user. In rule U2, 𝜔 is updated with 𝑥

being mapped to a nondeterministic real value. Similar to U1 if 𝑥 is

public, the assigned value becomes observable to the low-level user.

?𝑃 is only defined for states that model 𝑃 , without any change to

the state (rule U3). According to rule U4, 𝑥 ′ = 𝑒 & 𝑃 is runnable if

there exists a solution for the equation 𝑥 ′ = 𝑒 in the domain 𝑃 , i.e.,

for some nondeterministic continuous time span [0, 𝑟], value of 𝑥
gets updated according to the equation 𝑥 ′ = 𝑒 . In addition, in this

time span, every updated state must satisfy the domain condition 𝑃 .

Moreover, observables to lower-level users are available in case 𝑥 is

a public variable. In rule U5, 𝛼1 ∪ 𝛼2 nondeterministically chooses

𝛼1 or 𝛼2 to run. Rule U6 states that 𝛼 ; 𝛽 is executed by first running

𝛼 and then 𝛽 . Finally, according to ruleU7, 𝛼∗ iteratively runs 𝛼 zero

or more times, where the number of iterations is nondeterministic.

Note that 𝛼𝑛 denotes 𝑛 iterations of 𝛼 , defined as 𝛼0 =?⊤ and

𝛼𝑛+1 = 𝛼𝑛 ;𝛼 .

3.2 Instantiating Explicit Secrecy for HPs
The proposed semantic framework for direct information flows in

Section 2 can be straightforwardly instantiated for HPs: Let the set

of observables O be instantiated with the set of real numbers R.

4

A Semantic Framework for Direct Information Flows
in Hybrid-Dynamic Systems CPSS 2021, June 7th, 2021, Hong Kong, China

Sinit (𝑥 := 𝑒) = S Sinit (𝑥 := ∗) = S Sinit (?𝑃) = {𝜔 | 𝜔 ⊨ 𝑃 } = J𝑃K

Sinit (𝑥 ′ = 𝑒 & 𝑃) = J𝑃K Sinit (𝛼 ∪ 𝛽) = Sinit (𝛼) ∪ Sinit (𝛽)

Sinit (𝛼 ; 𝛽) = {𝜔 | 𝜔 ∈ Sinit (𝛼), ∃𝜔0, 𝜎0 . (𝜔,𝜔0, 𝜎0) ∈ J𝛼K𝑈 ∧𝜔0 ∈ Sinit (𝛽) }

Sinit (𝛼∗) = S

Figure 2: Definition of initial states for HP 𝛼 .

The set of variables V and states S are defined accordingly for HP,

where the set of all values is R. Programs 𝔭 are instantiated with

HPs whose syntax and semantics are given in the previous section.

We let Sinit (𝛼) be defined as the set of states that do not discard

the execution of 𝛼 , i.e., Sinit (𝛼) = {𝜔 | ∃𝜔 ′, 𝜎 .(𝜔,𝜔 ′, 𝜎) ∈ J𝛼K𝑈 }.
Accordingly, for each HP 𝛼 , Sinit (𝛼) is defined in Figure 2.

In the following example, we review the initial states for a few

HPs, which will be used to review the relation between noninter-

ference and explicit secrecy later in this section.

Example 3.1. Consider the following HPs:

𝛼0 ≡?𝑙 = 0; 𝑙 := 𝑙 + ℎ,
𝛼1 ≡ (?𝑙 = 0; 𝑙 := 𝑙 + ℎ) ∪ (?𝑙 ≠ 0; 𝑙 := 𝑙 + 1),
𝛼2 ≡ (?ℎ = 0; 𝑙 := 1) ∪ (?ℎ ≠ 0; 𝑙 := 2),
𝛼3 ≡ (?ℎ = 0; 𝑙 := ℎ) ∪ (?ℎ ≠ 0; 𝑙 := 0) .

Then, Sinit (𝛼0) = J𝑙 = 0K = {𝜔 | 𝜔 (𝑙) = 0}. We have Sinit (𝛼1) =
J𝑙 = 0K ∪ J𝑙 ≠ 0K = S, i.e., all states are acceptable as initial states.
Similarly, Sinit (𝛼2) = Sinit (𝛼3) = S.

The lattice of security levels L, as well as lev are also considered

for HPs. Then, according to Definition 2.1, 𝑓𝛼,𝜔0
is defined using

J𝛼K𝜔0
. This gives us the definitions of state transformers for HPs

defined in Figure 3. Note that the state transformer of 𝑥 := 𝑒 , 𝑥 := ∗,
and 𝑥 ′ = 𝑒 & 𝑃 return nontrivial observables in case 𝑥 is public. In

addition, the state transformers of ?𝑃 and 𝑥 ′ = 𝑒 & 𝑃 in state 𝜔0

check the satisfiability 𝑃 in 𝜔0. In case 𝑃 is not satisfiable in 𝜔0, the

result is empty.

Using Definition 2.2, the composition of two state transformers

of two HPs is instantiated. Low equivalence of two HP states is

instantiated according to function lev, as described in Definition

2.3. Low equivalence relation facilitates the instantiation of explicit

knowledge according to Definition 2.4, which in turn is used to

instantiate explicit secrecy (Definition 2.5). For explicit secrecymod-

ulo release (Definition 2.7), any set in one-to-one correspondence

to a finite subset of real numbers would suffice as the the set of

release events.

In the following example, we review the state transformers and

explicit knowledges of the HPs given in Example 3.1. Next, we

review whether they satisfy explicit secrecy. This example demon-

strates the incomparability of noninterference and explicit secrecy

in the context of hybrid-dynamic systems (𝛼2 and 𝛼3, in particular).

As an introductory example, none of the HPs include physical dy-

namics. In this regard, this example demonstrate the support of our

framework for discrete programs. The reader is referred to Section

4 for an illustrative example, where the HP combines discrete and

physical dynamics.

𝑓𝑥 :=𝑒,𝜔
0
(𝜔) =

{
{(𝜔 [𝑥 ↦→ 𝜔J𝑒K], [𝜔J𝑒K]) } if lev (𝑥) = L

{(𝜔 [𝑥 ↦→ 𝜔J𝑒K], 𝜀) } otherwise.

𝑓𝑥 :=∗,𝜔
0
(𝜔) =

{
{(𝜔 [𝑥 ↦→ 𝑟], [𝑟]) | 𝑟 ∈ R} if lev (𝑥) = L

{(𝜔 [𝑥 ↦→ 𝑟], 𝜀) | 𝑟 ∈ R} otherwise.

𝑓?𝑃,𝜔
0
(𝜔) =

{
{(𝜔, 𝜀) } if 𝜔0 |= 𝑃

∅ otherwise.
𝑓𝑥′=𝑒 & 𝑃,𝜔

0
(𝜔) =

{(𝜑 (𝑟), [𝜑 (𝑟) (𝑥)]) | ∃𝑟 ≥ 0.∃𝜑 : [0, 𝑟] → S. if 𝜔0 |= 𝑃 and lev (𝑥) = L

𝜑 solves 𝑥 ′ = 𝑒 on [0, 𝑟], 𝜑 (0) = 𝜔,

∀𝑡 ∈ [0, 𝑟] .𝜑 (𝑡) ⊨ 𝑃 }

{(𝜑 (𝑟), 𝜀) | ∃𝑟 ≥ 0.∃𝜑 : [0, 𝑟] → S. if 𝜔0 |= 𝑃 and lev (𝑥) ≠ L

𝜑 solves 𝑥 ′ = 𝑒 on [0, 𝑟], 𝜑 (0) = 𝜔,

∀𝑡 ∈ [0, 𝑟] .𝜑 (𝑡) ⊨ 𝑃 }

∅ otherwise.

𝑓𝛼∪𝛽,𝜔
0
(𝜔) = 𝑓𝛼,𝜔

0
(𝜔) ∪ 𝑓𝛽,𝜔

0
(𝜔)

𝑓𝛼 ;𝛽,𝜔
0
(𝜔) = ∪𝜔

1
:(𝜔

0
,𝜔

1
,_)∈J𝛼K𝑈 (𝑓𝛽,𝜔

1
⊙ 𝑓𝛼,𝜔

0
) (𝜔)

𝑓𝛼∗,𝜔
0
(𝜔) = ∪𝑛∈N 𝑓𝛼𝑛,𝜔

0
(𝜔)

Figure 3: Definition of state transformers for HP 𝛼 .

Example 3.2. Considering 𝛼0 from Example 3.1 the state trans-

former is defined as

𝑓𝛼0,𝜔0
(𝜔) = ∪𝜔1:(𝜔0,𝜔1,_) ∈J?𝑙=0K𝑈 (𝑓𝑙 :=𝑙+ℎ,𝜔1

⊙ 𝑓
?𝑙=0,𝜔0

) (𝜔).
Let 𝜔0 (𝑙) = 0. Then, 𝑓𝛼0,𝜔0

(𝜔) = (𝑓𝑙 :=𝑙+ℎ,𝜔0
⊙ 𝑓

?𝑙=0,𝜔0
) (𝜔), where

𝑓
?𝑙=0,𝜔0

(𝜔) = {(𝜔, 𝜀)}, and
𝑓𝑙 :=𝑙+ℎ,𝜔0

(𝜔) = {(𝜔 [𝑙 ↦→ 𝜔 (𝑙) + 𝜔 (ℎ)], [𝜔 (𝑙) + 𝜔 (ℎ)])}.
Therefore, 𝑓𝛼0,𝜔0

(𝜔) = {(𝜔 [𝑙 ↦→ 𝜔 (𝑙) + 𝜔 (ℎ)], [𝜔 (𝑙) + 𝜔 (ℎ)])}.
Then, the explicit knowledge is defined as

ke (𝛼0, 𝜔, 𝑓𝛼0,𝜔0
) = {𝜔 ′ | 𝜔 =L 𝜔 ′, 𝜔 ′ ∈ Sinit (𝛼0),

𝜋2 (𝑓𝛼0,𝜔0
(𝜔)) = 𝜋2 (𝑓𝛼0,𝜔0

(𝜔 ′))}
= {𝜔 ′ | 𝜔 =L 𝜔 ′, 𝜔 ′ ∈ Sinit (𝛼0), 𝜔 (ℎ) = 𝜔 ′(ℎ)}

This entails that ES ⊭ 𝛼0, 𝜔0 , since 𝜔 and 𝜔 ′
may not agree on the

value of ℎ. Independent of this result, 𝛼0 is also interfering due to

the existence of flow from ℎ to 𝑙1.

Considering 𝛼1 from Example 3.1 the state transformer is defined

as

𝑓𝛼1,𝜔0
(𝜔) = ∪𝜔1:(𝜔0,𝜔1,_) ∈J?𝑙=0K𝑈 (𝑓𝑙 :=𝑙+ℎ,𝜔1

⊙ 𝑓
?𝑙=0,𝜔0

) (𝜔)
∪𝜔1:(𝜔0,𝜔1,_) ∈J?𝑙≠0K𝑈 (𝑓𝑙 :=𝑙+1,𝜔1

⊙ 𝑓
?𝑙≠0,𝜔0

) (𝜔).
Let 𝜔0 (𝑙) = 0. Then, 𝑓𝛼1,𝜔0

(𝜔) = (𝑓𝑙 :=𝑙+ℎ,𝜔0
⊙ 𝑓

?𝑙=0,𝜔0
) (𝜔), as

𝑓
?𝑙=0,𝜔0

(𝜔) = {(𝜔, 𝜀)},
𝑓𝑙 :=𝑙+ℎ,𝜔0

(𝜔) = {(𝜔 [𝑙 ↦→ 𝜔 (𝑙) + 𝜔 (ℎ)], [𝜔 (𝑙) + 𝜔 (ℎ)])}, and
𝑓
?𝑙≠0,𝜔0

(𝜔) = ∅.
Therefore, 𝑓𝛼1,𝜔0

(𝜔) = {(𝜔 [𝑙 ↦→ 𝜔 (𝑙)+𝜔 (ℎ)], [𝜔 (𝑙)+𝜔 (ℎ)])}. Then
explicit knowledge is the same as the one for 𝛼0, and so ES ⊭ 𝛼1, 𝜔0 .

1
For the full formalization of indirect flows and the definition of noninterference in

the context of hybrid-dynamic systems, the reader is referred to ref. [7]. However, for

the sake of comparison in this example, we may define noninterference in a standard

way as follows: HP 𝛼 satisfies noninterference iff 𝜔1 =L 𝜔2 , (𝜔1, 𝜔
′
1
, 𝜎1) ∈ J𝛼K𝑈 ,

and (𝜔2, 𝜔
′
2
, 𝜎2) ∈ J𝛼K𝑈 implies 𝜎1 = 𝜎2 .

5

CPSS 2021, June 7th, 2021, Hong Kong, China Sepehr Amir-Mohammadian

Similar to 𝛼0, 𝛼1 is interfering due to the existence of flow from ℎ

to 𝑙 .

Considering 𝛼2 from Example 3.1,

𝑓𝛼2,𝜔0
(𝜔) = ∪𝜔1:(𝜔0,𝜔1,_) ∈J?ℎ=0K𝑈 (𝑓𝑙 :=1,𝜔1

⊙ 𝑓
?ℎ=0,𝜔0

) (𝜔)
∪𝜔1:(𝜔0,𝜔1,_) ∈J?ℎ≠0K𝑈 (𝑓𝑙 :=2,𝜔1

⊙ 𝑓
?ℎ≠0,𝜔0

) (𝜔).
This can be simplified as

𝑓𝛼2,𝜔0
(𝜔) = (𝑓𝑙 :=1,𝜔0

⊙ 𝑓
?ℎ=0,𝜔0

) (𝜔) ∪ (𝑓𝑙 :=2,𝜔0
⊙ 𝑓

?ℎ≠0,𝜔0
) (𝜔)

= {(𝜔 [𝑙 ↦→ 𝑎], [𝑎])}.
where 𝑎 = 1 if 𝜔0 (ℎ) = 0, and 𝑎 = 2 otherwise. Having explicit

knowledge as ke (𝛼2, 𝜔, 𝑓𝛼2,𝜔0
) = {𝜔 ′ | 𝜔 =L 𝜔 ′, 𝜔 ′ ∈ Sinit (𝛼2)}

ensures that ES ⊨ 𝛼2, 𝜔0 for any 𝜔0, and thus ES ⊨ 𝛼2 . This is while
𝛼2 is interfering, since there is indirect flow fromℎ to 𝑙 . Note that the

definition of explicit secrecy (Definition 2.5) quantifies on all initial

states 𝜔 to satisfy the relation, independent of whether 𝜔0 (ℎ) = 0

or not. This way, indirect flows are successfully ignored.

Considering 𝛼3 from Example 3.1,

𝑓𝛼3,𝜔0
(𝜔) = ∪𝜔1:(𝜔0,𝜔1,_) ∈J?ℎ=0K𝑈 (𝑓𝑙 :=ℎ,𝜔1

⊙ 𝑓
?ℎ=0,𝜔0

) (𝜔)
∪𝜔1:(𝜔0,𝜔1,_) ∈J?ℎ≠0K𝑈 (𝑓𝑙 :=0,𝜔1

⊙ 𝑓
?ℎ≠0,𝜔0

) (𝜔).
Let𝜔0 (ℎ) = 0. Then, 𝑓𝛼3,𝜔0

(𝜔) = (𝑓𝑙 :=ℎ,𝜔0
⊙𝑓

?ℎ=0,𝜔0
) (𝜔) = {(𝜔 [𝑙 ↦→

𝜔 (ℎ)], [𝜔 (ℎ)])}. Having ke (𝛼3, 𝜔, 𝑓𝛼3,𝜔0
) = {𝜔 ′ | 𝜔 =L 𝜔 ′, 𝜔 ′ ∈

Sinit (𝛼3), 𝜔 (ℎ) = 𝜔 ′(ℎ)} entails that ES ⊭ 𝛼3, 𝜔0 as 𝜔 and 𝜔 ′
may

not agree on ℎ. This is while 𝛼3 is noninterfering.

4 ETCS: AN ILLUSTRATIVE EXAMPLE
In this section, we borrow the specification of the ETCS system

from [32, 33] as an HP, which is introduced informally in Example

1.3. We study whether this system satisfies explicit secrecy. Let’s

denote the position, speed, and acceleration of the train with 𝑥 , 𝑣 ,

and 𝑎, resp. Moreover, let’s assume that the endpoint position of a

track block granted to the train by RBC is𝑚, and the preconfigured

maximum distance from position𝑚 that necessitates the train to

lower its speed is 𝑠 . Having these notations, ETCS can be defined

as 𝛼 ≡ (ctrl; drive)∗, where
ctrl ≡ (?𝑚 − 𝑥 < 𝑠;𝑎 := −𝑏) ∪ (?𝑚 − 𝑥 ≥ 𝑠;𝑎 := 𝑐)

drive ≡ 𝑘 := 0; (𝑥 ′ = 𝑣, 𝑣 ′ = 𝑎, 𝑘 ′ = 1 & 𝑣 ≥ 0 ∧ 𝑘 ≤ 𝑑)
ctrl is the digital controller (cyber component) that checks whether

the train is within the preconfigured distance 𝑠 of the end of the

block. If so (i.e., 𝑚 − 𝑥 < 𝑠), it applies the brake, by setting the

acceleration to the constant negative value −𝑏. If the train is not

within the distance 𝑠 from the end of the block (𝑚 − 𝑥 ≥ 𝑠), the

controller increases the speed, by setting the acceleration to the

constant positive value 𝑐 .

drive is the plant (physical component) that specifies how the

position of the train evolves through time, using the differential

equations 𝑥 ′ = 𝑣, 𝑣 ′ = 𝑎. In addition, drive includes a continuous
timer𝑘 that initially is set to zero and then linearly increases (𝑘 ′ = 1).

The continuous evolution of the train position, speed, and the timer

is constrained by its evolution domain. Evolution domain specifies

that 1) train speed cannot be negative, i.e., a train cannotmove in the

reverse direction, and 2) there is an upper bound on driving duration

(𝑘 ≤ 𝑑), i.e., for safety purposes, the train cannot drive continuously

more than preconfigured 𝑑 units of time before passing the control

to ctrl.

One may assume that physical parameters 𝑘 , 𝑥 , 𝑣 , and 𝑎 are

public values, as they can be calculated by any time and movement

tracker. This is while, preconfigured controlling parameters 𝑏, 𝑐 , 𝑠 ,

and 𝑑 can be assumed secret.𝑚 can also be assumed a non-public

value. Having these considerations, let’s study whether 𝛼 satisfies

explicit secrecy. According to Figure 2, Sinit (𝛼) = S. For the sake
of notational brevity, let’s consider the following:

𝛽 ≡ ctrl; drive
𝛾 ≡ ?𝑚 − 𝑥 < 𝑠;𝑎 := −𝑏
𝜆 ≡ ?𝑚 − 𝑥 ≥ 𝑠;𝑎 := 𝑐

𝜃 ≡ 𝑥 ′ = 𝑣, 𝑣 ′ = 𝑎, 𝑘 ′ = 1 & 𝑣 ≥ 0 ∧ 𝑘 ≤ 𝑑

The state transformer is defined as 𝑓𝛼,𝜔0
(𝜔) = ∪𝑛∈N 𝑓𝛽𝑛,𝜔0

(𝜔) .
Let’s consider the case, where 𝑛 = 1. We have

𝑓𝛽,𝜔0
(𝜔) = ∪𝜔1:(𝜔0,𝜔1,_) ∈JctrlK𝑈 (𝑓drive,𝜔1

⊙ 𝑓ctrl,𝜔0
) (𝜔) .

Let’s also assume that 𝜔0 ⊨𝑚 − 𝑥 ≥ 𝑠 . Then we need to study the

state transformer for ctrl and drive, in 𝜔0 and 𝜔1, resp.

The state transformer of ctrl in 𝜔0 is defined as

𝑓ctrl,𝜔0
(𝜔) = 𝑓𝛾,𝜔0

(𝜔) ∪ 𝑓𝜆,𝜔0
(𝜔) = 𝑓𝜆,𝜔0

(𝜔)
= 𝑓𝑎:=𝑐,𝜔0

⊙ 𝑓?𝑚−𝑥≥𝑠,𝜔0
(𝜔) = {(𝜔 [𝑎 ↦→ 𝜔 (𝑐)], [𝜔 (𝑐)])}.

Note that lev(𝑎) = L, and thus assigning 𝑐 to 𝑎 generates observable

sequence [𝜔 (𝑐)].
Next, let’s consider the state transformer of drive in 𝜔1.

𝑓drive,𝜔1
(𝜔 [𝑎 ↦→ 𝜔 (𝑐)]) = ∪𝜔2:(𝜔1,𝜔2,_) ∈J𝑘 :=0K𝑈 (𝑓𝜃,𝜔2

⊙
𝑓𝑘 :=0,𝜔1

) (𝜔 [𝑎 ↦→ 𝜔 (𝑐)])

Considering 𝑓𝑘 :=0,𝜔1
(𝜔 [𝑎 ↦→ 𝜔 (𝑐)]) = {(𝜔 [𝑎 ↦→ 𝜔 (𝑐)] [𝑘 ↦→

0], [0])}, and since 𝜔1 [𝑘 ↦→ 0] ⊨ 𝑣 ≥ 0 ∧ 𝑘 ≤ 𝑑 and lev(𝑥) =

lev(𝑣) = lev(𝑘) = L, according to Figure 3 we have

𝑓𝜃,𝜔1 [𝑘 ↦→0] (𝜔 [𝑎 ↦→ 𝜔 (𝑐)] [𝑘 ↦→ 0]) ={
(𝜑 (𝑟), [𝜑 (𝑟) (𝑥), 𝜑 (𝑟) (𝑣), 𝜑 (𝑟) (𝑘)])

�� ∃𝑟 ≥ 0.∃𝜑 : [0, 𝑟] → S.
𝜑 solves 𝑥 ′ = 𝑣, 𝑣 ′ = 𝑎, 𝑘 ′ = 1 on [0, 𝑟],
𝜑 (0) = 𝜔 [𝑎 ↦→ 𝜔 (𝑐)] [𝑘 ↦→ 0],∀𝑡 ∈ [0, 𝑟] .𝜑 (𝑡) ⊨ 𝑣 ≥ 0 ∧ 𝑘 ≤ 𝑑

}
.

Indeed, 𝑥 ′ = 𝑣, 𝑣 ′ = 𝑎, 𝑘 ′ = 1 are solvable in a continuous range, i.e.,

we have state 𝜑 (𝑡) that maps 𝑘 to 𝑡 , maps 𝑣 to 𝜔 (𝑐) · 𝑡 + 𝜔 (𝑣), and
maps 𝑥 to

𝜔 (𝑐)
2

𝑡2 +𝜔 (𝑣) · 𝑡 +𝜔 (𝑥). Note that 𝜔 (𝑣) and 𝜔 (𝑥) are the
initial values for speed and position when 𝜃 starts the execution.

Moreover, time is limited by the evolution domain to not exceed 𝑑 .

Therefore, we have

𝑓𝜃,𝜔1 [𝑘 ↦→0] (𝜔 [𝑎 ↦→ 𝜔 (𝑐)] [𝑘 ↦→ 0]) ={
(𝜑 (𝑡), [𝜑 (𝑡) (𝑥), 𝜑 (𝑡) (𝑣), 𝜑 (𝑡) (𝑘)]

�� 𝑡 ∈ [0, 𝑑], 𝜑 (𝑡) (𝑘) = 𝑡,

𝜑 (𝑡) (𝑥) = 𝜔 (𝑐)
2

𝑡2 + 𝜔 (𝑣) · 𝑡 + 𝜔 (𝑥), 𝜑 (𝑡) (𝑣) = 𝜔 (𝑐) · 𝑡 + 𝜔 (𝑣),

∀𝑦 ≠ 𝑥, 𝑣, 𝑘 .𝜑 (𝑡) (𝑦) = 𝜔 [𝑎 ↦→ 𝜔 (𝑐)] (𝑦)
}
.

Using the results for 𝑓𝑘 :=0,𝜔1
(𝜔 [𝑎 ↦→ 𝜔 (𝑐)]) and 𝑓𝜃,𝜔1 [𝑘 ↦→0] (𝜔 [𝑎 ↦→

𝜔 (𝑐)] [𝑘 ↦→ 0]), we can simplify the state transformer for drive at
6

A Semantic Framework for Direct Information Flows
in Hybrid-Dynamic Systems CPSS 2021, June 7th, 2021, Hong Kong, China

state 𝜔1 as follows.

𝑓drive,𝜔1
(𝜔 [𝑎 ↦→ 𝜔 (𝑐)]) =

{
(𝜑 (𝑡), [0, 𝜑 (𝑡) (𝑥), 𝜑 (𝑡) (𝑣), 𝜑 (𝑡) (𝑘)]

��
𝑡 ∈ [0, 𝑑], 𝜑 (𝑡) (𝑘) = 𝑡, 𝜑 (𝑡) (𝑥) = 𝜔 (𝑐)

2

𝑡2 + 𝜔 (𝑣) · 𝑡 + 𝜔 (𝑥),

𝜑 (𝑡) (𝑣) = 𝜔 (𝑐) · 𝑡 + 𝜔 (𝑣),
∀𝑦 ≠ 𝑥, 𝑣, 𝑘 .𝜑 (𝑡) (𝑦) = 𝜔 [𝑎 ↦→ 𝜔 (𝑐)] (𝑦)

}
.

Now that we have the state transformers for ctrl and drive in
states 𝜔0 and 𝜔1 resp., the state transformer for 𝛽 in 𝜔0 is

𝑓𝛽,𝜔0
(𝜔) =

{
(𝜑 (𝑡), [𝜔 (𝑐), 0, 𝜑 (𝑡) (𝑥), 𝜑 (𝑡) (𝑣), 𝜑 (𝑡) (𝑘)]

��
𝑡 ∈ [0, 𝑑], 𝜑 (𝑡) (𝑘) = 𝑡, 𝜑 (𝑡) (𝑥) = 𝜔 (𝑐)

2

𝑡2 + 𝜔 (𝑣) · 𝑡 + 𝜔 (𝑥),

𝜑 (𝑡) (𝑣) = 𝜔 (𝑐) · 𝑡 + 𝜔 (𝑣),
∀𝑦 ≠ 𝑥, 𝑣, 𝑘 .𝜑 (𝑡) (𝑦) = 𝜔 [𝑎 ↦→ 𝜔 (𝑐)] (𝑦)

}
.

Using the state transformer above, we have the following the ex-

plicit knowledge for 𝛽

ke (𝛽,𝜔, 𝑓𝛽,𝜔0
) = {𝜔 ′ | 𝜔 =L 𝜔 ′, 𝜋2 (𝑓𝛽,𝜔0

(𝜔)) = 𝜋2 (𝑓𝛽,𝜔0
(𝜔 ′))},

where

𝜋2 (𝑓𝛽,𝜔0
(𝜔)) = {[𝜔 (𝑐), 0, 𝜔 (𝑐)

2

𝑡2 + 𝜔 (𝑣) · 𝑡 + 𝜔 (𝑥),

𝜔 (𝑐) · 𝑡 + 𝜔 (𝑣), 𝑡] | 𝑡 ∈ [0, 𝑑]}
Since lev(𝑐) = H, it is not necessarily the case that 𝜔 (𝑐) = 𝜔 ′(𝑐).
This entails that 𝜋2 (𝑓𝛽,𝜔0

(𝜔)) is not equal to 𝜋2 (𝑓𝛽,𝜔0
(𝜔 ′)) nec-

essarily for arbitrary low equivalent state 𝜔 ′
, and thus ES ⊭ 𝛽, 𝜔0.

Intuitively, secrect data 𝑐 is directly leaking to public domain. Since

𝛽 is a single iteration of 𝛼 , it is intuitive that 𝛼 does not satisfy

explicit secrecy either.

We can follow this same sequence of inferences to deduce that

parameter 𝑏 also directly leaks to the public domain
2
. On the other

hand, there is not any direct flow from𝑚, 𝑑 and 𝑠 to public variables.

5 A DYNAMIC TAINTING POLICY FOR
HYBRID-DYNAMIC SYSTEMS

In this section, we extend HPs with a dynamic tainting policy, and

prove its soundness (Definition 2.6) based on explicit secrecy. Let

𝜏 : V → L be the instantiation of the dynamic taint function for

HPs with its universe denoted by T . We assume that the initial

dynamic taint function 𝜏init is defined as lev. Then the taint of a

polynomial term, denoted by 𝜏J𝑒K, can be defined as demonstrated

in Figure 4.

We extend the denotation of HP 𝛼 to be J𝛼K𝑇 ⊆ S×T ×S×T ×
O∗

to capture a dynamic tainting policy, defined in Figure 4. The

policy is standard by disallowing direct flows of highly confidential

information to low confidential data containers. This is, in particular,

reflected by the rules T1 and T4 through security-level comparisons.

According to this tainting policy, 𝑥 := 𝑒 is allowed to run if the

taint of 𝑒 is smaller than the taint of 𝑥 (rule T1), i.e., 𝑒 conveys less

confidential data than the confidentiality level of 𝑥 . If this precondi-

tion is met, the state and the taint function is updated accordingly.

Otherwise, the execution is not allowed. This is while, for 𝑥 = ∗
(rule T2) such precondition is not enforced, since the nondetermin-

istic real value that is assigned to 𝑥 is a public value according to

2
We just need to assume that 𝜔0 ⊨𝑚 − 𝑥 < 𝑠 .

𝜏J𝑥K = 𝜏 (𝑥) 𝜏J𝑐K = L 𝜏J𝑒.𝑒′K = 𝜏J𝑒K⊔𝜏J𝑒′K 𝜏J𝑒+𝑒′K = 𝜏J𝑒K⊔𝜏J𝑒′K

T1

𝜏J𝑒K ⪯ 𝜏J𝑥K 𝜔′ = 𝜔 [𝑥 ↦→ 𝜔J𝑒K]
𝜏′ = 𝜏 [𝑥 ↦→ 𝜏J𝑒K] lev (𝑥) = L ⇒ 𝜎 = [𝜔J𝑒K] lev (𝑥) ≠ L ⇒ 𝜎 = 𝜀

(𝜔,𝜏,𝜔′, 𝜏 ′, 𝜎) ∈ J𝑥 := 𝑒K𝑇

T2

∃𝑟 ∈ R.
(
𝜔′ = 𝜔 [𝑥 ↦→ 𝑟] ∧ 𝜏 ′ = 𝜏 [𝑥 ↦→ L] ∧ (lev (𝑥) = L ⇒ 𝜎 = [𝑟])∧

(lev (𝑥) ≠ L ⇒ 𝜎 = 𝜀)
)

(𝜔,𝜏,𝜔′, 𝜏 ′, 𝜎) ∈ J𝑥 := ∗K𝑇

T3

𝜔 ⊨ 𝑃

(𝜔,𝜏,𝜔, 𝜏, 𝜀) ∈ J?𝑃K𝑇

T4

∃𝑟 ≥ 0, 𝜑 : [0, 𝑟] → S.
(
(𝜑 solves 𝑥 ′ = 𝑒 on [0, 𝑟]) ∧ (∀𝑡 ∈ [0, 𝑟] .𝜑 (𝑡) ⊨ 𝑃)∧

(∀𝑡 ∈ [0, 𝑟] .𝜏J𝜑 (𝑡) (𝑥)K ⪯ 𝜏J𝑥K) ∧ (𝜏′ = 𝜏 [𝑥 ↦→ 𝜏J𝜑 (𝑟) (𝑥)K])∧
(lev (𝑥) = L ⇒ 𝜎 = [𝜑 (𝑟) (𝑥)]) ∧ (lev (𝑥) ≠ L ⇒ 𝜎 = 𝜀)

)
(𝜑 (0), 𝜏, 𝜑 (𝑟), 𝜏 ′, 𝜎) ∈ J𝑥 ′ = 𝑒 & 𝑃K𝑇

T5

(𝜔,𝜏,𝜔′, 𝜏 ′, 𝜎) ∈ J𝛼𝑖K𝑇 𝑖 = 1, 2

(𝜔,𝜏,𝜔′, 𝜏 ′, 𝜎) ∈ J𝛼1 ∪ 𝛼2K𝑇

T6

∃𝜔0, 𝜏0, 𝜎0, 𝜎1 .
(
(𝜔,𝜏,𝜔0, 𝜏0, 𝜎0) ∈ J𝛼K𝑇∧

(𝜔0, 𝜏0, 𝜔
′, 𝜏 ′, 𝜎1) ∈ J𝛽K𝑇 ∧ 𝜎 = 𝜎0𝜎1

)
(𝜔,𝜏,𝜔′, 𝜏 ′, 𝜎) ∈ J𝛼 ; 𝛽K𝑇

T7

(𝜔,𝜏,𝜔′, 𝜏 ′, 𝜎) ∈ ∪𝑛∈NJ𝛼𝑛K𝑇
(𝜔,𝜏,𝜔′, 𝜏 ′, 𝜎) ∈ J𝛼∗K𝑇

Figure 4: Definition of 1) the taint of polynomial terms: 𝜏J𝑒K,
and 2) semantics of dynamic tainting policy for HPs: J𝛼K𝑇 .

the specification of the taint for polynomial terms (𝜏J𝑐K = L). In

this case, taint of 𝑥 is always set to L. Rule T3 allows the execution

for ?𝑃 in a state as long as that state models 𝑃 . In this case the taint

function does not change. Rule T4 checks whether the taint of the

value being assigned to 𝑥 during the nondeterministic time span

[0, 𝑟] is smaller than the taint of 𝑥 . The execution is allowed and

the taint function is updated accordingly, only if this precondition

is met. For 𝛼1∪𝛼2, the tainting policy nondeterministically chooses

to run either 𝛼1 or 𝛼2 and accordingly the taint function is updated

(rule T5). The sequence 𝛼 ; 𝛽 is allowed to run according to rule T6 if

𝛼 and 𝛽 are allowed to run individually one after the other. Finally

according to rule T7, iteration of 𝛼 for nondeterministic number of

times is allowed if zero or more iterations of 𝛼 can be executed in

sequence.

Example 5.1. As described in Section 4, the ETCS hybrid-dynamic

system does not satisfy explicit secrecy due to the existence of direct

flows from secret parameters𝑏 and 𝑐 to the public domain. Applying

the dynamic tainting policy of Figure 4 prevents the execution of

the HP. According to the rule T1, 𝜏J𝑐K ⪯ 𝜏J𝑎K and 𝜏J−𝑏K ⪯ 𝜏J𝑎K are
prerequisites for the execution of 𝑎 := 𝑐 and 𝑎 := −𝑏, resp., whereas
neither of these prerequisites holds. For the sake of discussion,

let’s assume that acceleration is also considered secret data. Then,

these assignments do not violate the aforementioned tainting policy.

However, the execution of 𝑥 ′ = 𝑣, 𝑣 ′ = 𝑎, 𝑘 ′ = 1 & 𝑣 ≥ 0 ∧ 𝑘 ≤ 𝜖 in

the drive component is rejected based on ruleT4, since 𝜏J𝜑 (𝑡) (𝑥)K =
𝜏J𝜑 (𝑡) (𝑣)K = H as 𝜏J𝑐K = H, and thus 𝜏J𝜑 (𝑡) (𝑥)K ⪯ 𝜏J𝑥K and

𝜏J𝜑 (𝑡) (𝑣)K ⪯ 𝜏J𝑣K do not hold.

Using the proposed semantic framework for direct flow of infor-

mation confidentiality, we can study the soundness of taint tracking

7

CPSS 2021, June 7th, 2021, Hong Kong, China Sepehr Amir-Mohammadian

system as a property, where a given HP is successfully executed

starting from an initial state, only if that HP satisfies explicit secrecy

in that initial state. The proof of the theorem is given in Appendix

A.

Theorem 5.2 (Soundness of J𝛼K𝑇). The dynamic tainting policy
J𝛼K𝑇 of Figure 4 is sound (Definition 2.6).

Declassification. Indeed the depicted tainting policy of Figure

4 does not support information declassification. For this purpose,

Definition 2.7 provides the semantic specification of direct flows in

the presence of declassified data. A dynamic tainting policy that

supports gradual release [4] may include HPs that enable declassi-

fication.

Let HPs be extended with a declassifier: 𝛼 ::= · · · | dc(𝑒). The
semantics of dc(𝑒) can be defined as (𝜔,𝜔, rel(𝜔J𝑒K)) ∈ Jdc(𝑒)K𝑈 ,

where rel(·) is used to mark a released observable, and the set of

release events is defined as R ⊂ {rel(𝑟) | 𝑟 ∈ R}. The tainting policy
allows to declassify data and generates release events accordingly:

(𝜔, 𝜏, 𝜔, 𝜏, rel(𝜔J𝑒K)) ∈ Jdc(𝑒)K𝑇 .

6 RELATEDWORK
Formal models of CPSs. There are three major approaches to

model CPSs in a formal fashion: 1) Hybrid automata [3, 21] are one

of the earliest attempts to formally model CPSs, where a finite state

transition system describes a hybrid system by capturing discrete

(cyber) and continuous (physical) variables in each state. 2) Hy-

brid process calculi [19, 25–27] model CPSs in terms of agents that

represent physical plants and cyber components communicating

through named channels. For example, in CCPS [26] a labeled tran-

sition system is defined that demonstrates how such agents execute

using shared channels. 3) Hybrid-dynamic models [6, 33–35] rely

on programming languages techniques, and in particular hybrid

programs to specify CPSs. A hybrid program is a sequence of state-

ments, where a statement is either a discrete step of execution (e.g.,

an assignment, or a branch), or a continuous evolution of dynamic

variables in a certain domain.

Indirect information flows in CPSs. Indirect (general) informa-

tion flow analysis has been explored in CPSs in several lines of

work. Akella et al. [2] rely on process algebra to specify a seman-

tic model for information flows in CPSs, including a gas pipeline

system. However, their model ignores physical plants of the CPS

altogether. Akella et al. [1] have formalized the flow of information

confidentiality in FREEDM smart grid [22] using a process algebraic

model of the system, describing nondeducibility and noninterfer-

ence properties. Gamage et al. [20] use a finite state machine to

analyze the flow of information in CPSs. Lanotte et al. [28] propose

CCPSA, a process calculus that models indirect information flows

in CPSs. Castellanos et al. [8] use data flow graphs and propose a

reachability algorithm to analyze PLC programs that capture the

interaction among different components of a CPS. Morris et al. [31]

use an information-theoretic model to quantify the susceptibility

of a CPS to attacks that target flow of information integrity. Liu

et al. [29] propose an architecture to secure CPSs, which includes

input analysis, information flow analysis and hardware verification.

All these lines of work, however, treat the physical components

of CPSs discretely rather than continuously. Bohrer et al. [7] have

addressed this issue by proposing a logic to verify indirect infor-

mation flows in hybrid programs. Using this logic a variants of

nondeducibility property is specified for a smart grid system and

information leakage is demonstrated.

Semantics of direct information flows. While all the aforemen-

tioned lines of work propose frameworks to verify the general flow

of information in CPSs, they do not support any implementation of

flow analysis in such systems. In contrast, direct information flow

policies can be enforced on single traces of execution. Schoepe et

al. [38] have proposed an underlying semantic framework through

which direct information flow can be studied in single threaded

low-level programs with a single-step operational semantics. Ex-

plicit secrecy is defined as a property of a program, where the

execution does not change the knowledge of a low confidentiality

user. Knowledge [4] is defined as the set of initial states that a low

confidentiality user is able to consider to generate a given sequence

of observables. Explicit knowledge restricts attacker knowledge for

direct confidentiality flows only. Explicit secrecy models direct flow

of information confidentiality. This provides a semantic framework

by which correctness of different confidentiality taint trackers can

be studied. In the same line of work, Skalka et al. [42] have recently

proposed the semantic framework for direct flow of information

integrity in high-level functional settings, with small-step opera-

tional semantics. These formalizations, however, are not applicable

to hybrid-dynamic settings, where due to their nature, the seman-

tics is expressible denotationally, mapping an initial state to a set

of final states through the execution of an HP.

Taint tracking in CPSs. Both static and dynamic taint tracking

have been used to analyze direct flow of information in CPSs. CPAC

[14] introduces dynamic taint analysis for programmable logic con-

trollers. MISMO [44] is a reverse engineering framework for CPSs

that includes a dynamic taint tracker, where sensor measurements

introduce the tainted data, and actuator input functionalities are

the taint sinks. LUCON [40] is a policy framework for CPSs that

uses dynamic taint analysis to enforce security policies at runtime.

It assigns taint to the messages being communicated between dif-

ferent components of the CPS. Klingensmith et al. [24] propose a

privacy agent for mobile and IoT devices that embeds a dynamic

taint tracker to study the direct flow of data from input channels to

the storage APIs. Cherupalli et al. [10] provide direct information

flow analysis by tracking the taints at the logical gate level. To this

end, they have developed a tool that simulates gate-level behavior

of the IoT applications. Recently, Ferrara et al. [16] have extended a

Julia-based static taint analyzer [17] for IoT privacy. FlowFence [15]

uses sandboxing to identify the flow of sensitive taint-labeled data

in and out of different IoT application functions. Saint [9] is a static

taint tracker for IoT applications that translates application source

code into an intermediate-level code to locate the taint sources

and sinks. Another recent work [30] studies static taint analysis in

the the context of multiple programming languages being used to

deploy a single CPS.

7 CONCLUSION AND FUTUREWORK
In this paper, we have proposed the semantics of direct informa-

tion flows in CPSs. This framework is a variant of explicit secrecy

8

A Semantic Framework for Direct Information Flows
in Hybrid-Dynamic Systems CPSS 2021, June 7th, 2021, Hong Kong, China

that supports nondeterminism and denotational semantics, and

thus appropriate for hybrid-dynamic environments in which dis-

crete computational steps (cyber) are combined with continuous

dynamics (physical). The proposed semantics provides an under-

lying framework to study the effectiveness of direct information

flow analyzers in hybrid-dynamic systems. This notion is formu-

lated as a soundness property. As an example, we have defined a

dynamic confidentiality taint tracking policy for hybrid programs

and proven its soundness.

The proposed semantic framework paves the way to study static

and dynamic taint trackers that are used for cyber-physical systems,

some of which are explored in the related work. As a future work,

we are planning to model a subset of these systems in hybrid-

dynamic settings and study their effectiveness using our semantic

framework.

Along with hybrid programs, there are alternative approaches to

specify CPSs. One such alternative is to use process algebraic mod-

els. A potential future work is to study direct flow of information

in a process algebra that models CPSs.

REFERENCES
[1] Ravi Akella and Bruce M McMillin. 2010. Information flow analysis of energy

management in a smart grid. In International Conference on Computer Safety,
Reliability, and Security. Springer, 263–276.

[2] Ravi Akella, Han Tang, and Bruce MMcMillin. 2010. Analysis of information flow

security in cyber–physical systems. International Journal of Critical Infrastructure
Protection 3, 3-4 (2010), 157–173.

[3] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho. 1992.

Hybrid automata: An algorithmic approach to the specification and verification

of hybrid systems. In Hybrid systems. Springer, 209–229.
[4] Aslan Askarov and Andrei Sabelfeld. 2007. Gradual Release: Unifying Declassifi-

cation, Encryption and Key Release Policies. In IEEE S&P. 207–221.
[5] Jonathan Bell and Gail Kaiser. 2015. Dynamic taint tracking for java with phos-

phor. In Proceedings of the 2015 International Symposium on Software Testing and
Analysis. 409–413.

[6] Patrick Blackburn and Jerry Seligman. 1995. Hybrid languages. Journal of Logic,
Language and Information 4, 3 (1995), 251–272.

[7] Brandon Bohrer and André Platzer. 2018. A hybrid, dynamic logic for hybrid-

dynamic information flow. In Proceedings of the 33rd Annual ACM/IEEE Sympo-
sium on Logic in Computer Science. 115–124.

[8] John H Castellanos, Martín Ochoa, and Jianying Zhou. 2018. Finding dependen-

cies between cyber-physical domains for security testing of industrial control

systems. In Proceedings of the 34th Annual Computer Security Applications Confer-
ence. 582–594.

[9] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,

Patrick McDaniel, and A Selcuk Uluagac. 2018. Sensitive information tracking in

commodity IoT. In 27th {USENIX} Security Symposium ({USENIX} Security 18).
1687–1704.

[10] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori. 2017.

Software-based gate-level information flow security for IoT systems. In Proceed-
ings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture.
328–340.

[11] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. Journal of
Computer Security 18, 6 (2010), 1157–1210.

[12] Pieter Jan Laurens Cuijpers and Michel A Reniers. 2005. Hybrid process algebra.

The Journal of Logic and Algebraic Programming 62, 2 (2005), 191–245.

[13] Werner Damm,AlfredMikschl, Jens Oehlerking, Ernst-Rüdiger Olderog, Jun Pang,

André Platzer, Marc Segelken, and Boris Wirtz. 2007. Automating verification of

cooperation, control, and design in traffic applications. In Formal methods and
hybrid real-time systems. Springer, 115–169.

[14] Sriharsha Etigowni, Dave Tian, Grant Hernandez, Saman Zonouz, and Kevin

Butler. 2016. CPAC: securing critical infrastructure with cyber-physical access

control. In Proceedings of the 32nd annual conference on computer security appli-
cations. 139–152.

[15] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro

Conti, and Atul Prakash. 2016. Flowfence: Practical data protection for emerging

iot application frameworks. In 25th {USENIX} Security Symposium ({USENIX}
Security 16). 531–548.

[16] Pietro Ferrara, Amit Kr Mandal, Agostino Cortesi, and Fausto Spoto. 2020. Static

analysis for discovering IoT vulnerabilities. International Journal on Software

Tools for Technology Transfer (2020), 1–18.
[17] Pietro Ferrara, Luca Olivieri, and Fausto Spoto. 2020. BackFlow: Backward

Context-Sensitive Flow Reconstruction of Taint Analysis Results. In International
Conference on Verification, Model Checking, and Abstract Interpretation. Springer,
23–43.

[18] William Fu, Raymond Lin, and Daniel Inge. 2018. Taintassembly: Taint-based in-

formation flow control tracking for webassembly. arXiv preprint arXiv:1802.01050
(2018).

[19] Vashti Galpin, Luca Bortolussi, and Jane Hillston. 2013. HYPE: Hybrid modelling

by composition of flows. Formal Aspects of Computing 25, 4 (2013), 503–541.

[20] Thoshitha T Gamage, Bruce M McMillin, and Thomas P Roth. 2010. Enforcing

information flow security properties in cyber-physical systems: A generalized

framework based on compensation. In 2010 IEEE 34th Annual Computer Software
and Applications Conference Workshops. IEEE, 158–163.

[21] Thomas A Henzinger. 2000. The theory of hybrid automata. In Verification of
digital and hybrid systems. Springer, 265–292.

[22] Alex Q Huang. 2009. Renewable energy system research and education at the NSF

FREEDM systems center. In 2009 IEEE Power & Energy Society General Meeting.
IEEE, 1–6.

[23] Wei Huang, Yao Dong, and Ana Milanova. 2014. Type-based taint analysis for

Java web applications. In International Conference on Fundamental Approaches to
Software Engineering. Springer, 140–154.

[24] Neil Klingensmith, Younghyun Kim, and Suman Banerjee. 2019. A Hypervisor-

Based Privacy Agent for Mobile and IoT Systems. In Proceedings of the 20th
International Workshop on Mobile Computing Systems and Applications. 21–26.

[25] Ivan Lanese, Luca Bedogni, and Marco Di Felice. 2013. Internet of things: a

process calculus approach. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing. 1339–1346.

[26] Ruggero Lanotte and Massimo Merro. 2017. A calculus of cyber-physical systems.

In International Conference on Language and Automata Theory and Applications.
Springer, 115–127.

[27] Ruggero Lanotte and Massimo Merro. 2018. A semantic theory of the Internet of

Things. Information and Computation 259 (2018), 72–101.

[28] Ruggero Lanotte, Massimo Merro, Riccardo Muradore, and Luca Viganò. 2017. A

formal approach to cyber-physical attacks. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF). IEEE, 436–450.

[29] Jed Liu, Joe Corbett-Davies, Andrew Ferraiuolo, Alexander Ivanov, Mulong Luo,

G Edward Suh, Andrew C Myers, and Mark Campbell. 2018. Secure autonomous

cyber-physical systems through verifiable information flow control. In Proceed-
ings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy. 48–59.

[30] Amit Mandal, Pietro Ferrara, Yuliy Khlyebnikov, Agostino Cortesi, and Fausto

Spoto. 2020. Cross-program taint analysis for IoT systems. In Proceedings of the
35th Annual ACM Symposium on Applied Computing. 1944–1952.

[31] Eric Rothstein Morris, Carlos G Murguia, and Martín Ochoa. 2017. Design-time

quantification of integrity in cyber-physical systems. In Proceedings of the 2017
Workshop on Programming Languages and Analysis for Security. 63–74.

[32] André Platzer. 2007. Differential dynamic logic for verifying parametric hy-

brid systems. In International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods. Springer, 216–232.

[33] André Platzer. 2008. Differential dynamic logic for hybrid systems. Journal of
Automated Reasoning 41, 2 (2008), 143–189.

[34] André Platzer. 2012. The complete proof theory of hybrid systems. In 2012 27th
Annual IEEE Symposium on Logic in Computer Science. IEEE, 541–550.

[35] André Platzer. 2018. Logical foundations of cyber-physical systems. Vol. 662.
Springer.

[36] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based Information-flow

Security. IEEE Journal on selected areas in communications 21, 1 (2003), 5–19.
[37] Fred B Schneider. 2000. Enforceable security policies. ACM Transactions on

Information and System Security (TISSEC) 3, 1 (2000), 30–50.
[38] Daniel Schoepe, Musard Balliu, Benjamin C. Pierce, and Andrei Sabelfeld. 2016.

Explicit Secrecy: A Policy for Taint Tracking. In IEEE EuroS&P. 15–30.
[39] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. 2019. PhASAR: An

inter-procedural static analysis framework for C/C++. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
393–410.

[40] Julian Schütte and Gerd Stefan Brost. 2018. LUCON: Data flow control for

message-based IoT systems. In 2018 17th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/12th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE,
289–299.

[41] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.

Jalangi: a selective record-replay and dynamic analysis framework for JavaScript.

In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering.
488–498.

[42] Christian Skalka, Sepehr Amir-Mohammadian, and Samuel Clark. 2020. Maybe

tainted data: Theory and a case study. Journal of Computer Security Preprint

(2020), 1–41.

9

CPSS 2021, June 7th, 2021, Hong Kong, China Sepehr Amir-Mohammadian

[43] Hao Sun, Xiangyu Zhang, Chao Su, and Qingkai Zeng. 2015. Efficient dynamic

tracking technique for detecting integer-overflow-to-buffer-overflow vulnera-

bility. In Proceedings of the 10th ACM Symposium on Information, Computer and
Communications Security. 483–494.

[44] Pengfei Sun, Luis Garcia, and Saman Zonouz. 2019. Tell Me More Than Just

Assembly! Reversing Cyber-Physical Execution Semantics of Embedded IoT Con-

troller Software Binaries. In 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 349–361.

[45] Aron Szanto, Timothy Tamm, and Artidoro Pagnoni. 2018. Taint tracking for

webassembly. arXiv preprint arXiv:1807.08349 (2018).
[46] Dennis M. Volpano. 1999. Safety versus Secrecy. In SAS. 303–311.
[47] Jingming Wang and Huiqun Yu. 2014. Analysis of the composition of non-

deducibility in cyber-physical systems. Applied Mathematics & Information
Sciences 8, 6 (2014), 3137.

[48] Ran Wang, Guangquan Xu, Xianjiao Zeng, Xiaohong Li, and Zhiyong Feng. 2018.

TT-XSS: A novel taint tracking based dynamic detection framework for DOM

Cross-Site Scripting. J. Parallel and Distrib. Comput. 118 (2018), 100–106.

A PROOFS
LemmaA.1 (Tainting faithfulness). Let (𝜔, 𝜏, 𝜔 ′, 𝜏 ′, 𝜎) ∈ J𝛼K𝑇 .

This implies that (𝜔,𝜔 ′, 𝜎) ∈ J𝛼K𝑈 .

Proof. By induction on the structure of 𝛼 . □

Lemma A.1 implies that we can use state transformers for HPs

with the dynamic taint analysis introduced in Section ??. This no-
tion is implicit the proofs of the following lemmas and theorems.

Definition A.2 (Taint equivalent states). Two states 𝜔 and 𝜔 ′
are

taint equivalent, 𝜔 =𝜏 𝜔 ′
, iff for any 𝑥 , if 𝜏J𝑥K = L then 𝜔 (𝑥) =

𝜔 ′(𝑥).

Lemma A.3. Let 𝜏J𝑒K = L and 𝜔 =𝜏 𝜔 ′. Then, 𝜔J𝑒K = 𝜔 ′J𝑒K.

Proof. By induction on the structure of 𝑒 . □

Lemma A.4. Let �̂� and �̂� ′ be two low-equivalent states in Sinit (𝛼).
If (𝜔0, 𝜎) ∈ 𝑓𝛼,𝜔 (�̂�), then there exists some 𝜔 ′

0
such that (𝜔 ′

0
, 𝜎) ∈

𝑓𝛼,𝜔 (�̂� ′), and 𝜔0 =L 𝜔 ′
0
.

Proof. By induction on the structure of 𝛼 , and applying Lemma

A.3. □

Proof of Theorem 5.2. By induction on the structure of 𝛼 .

• Let 𝛼 be 𝑥 := 𝑒 . From (𝜔, 𝜏init , 𝜔 ′, 𝜏, 𝜎) ∈ J𝑥 := 𝑒K𝑇 we

infer that 𝜏initJ𝑒K ⪯ 𝜏initJ𝑥K. Moreover, if lev(𝑥) = L then

𝜎 = [𝜔J𝑒K], otherwise 𝜎 = 𝜀.

– Let lev(𝑥) ≠ L. Then the property holds since for any two

states �̂� and �̂� ′
, we have𝜋2 (𝑓𝑥 :=𝑒,𝜔 (�̂�)) = 𝜋2 (𝑓𝑥 :=𝑒,𝜔 (�̂� ′)) =

{𝜀}.
– Let lev(𝑥) = L. Then, 𝜏initJ𝑒K = L according to 𝜏initJ𝑒K ⪯
𝜏initJ𝑥K. Let �̂� =𝜏init �̂�

′
. According to Lemma A.3, �̂�J𝑒K =

�̂� ′J𝑒K. This entails that the observables 𝜋2 (𝑓𝑥 :=𝑒,𝜔 (�̂�)) =
[�̂�J𝑒K] and 𝜋2 (𝑓𝑥 :=𝑒,𝜔 (�̂� ′)) = [�̂� ′J𝑒K] are equal.

• Let 𝛼 be 𝑥 := ∗. From (𝜔, 𝜏init , 𝜔 ′, 𝜏, 𝜎) ∈ J𝑥 := ∗K𝑇 we infer

that if lev(𝑥) = L then 𝜎 = [𝑟] where 𝑟 ∈ R, otherwise 𝜎 = 𝜀.

– Let lev(𝑥) ≠ L. Then the property holds since for any two

states �̂� and �̂� ′
, we have𝜋2 (𝑓𝑥 :=𝑒,𝜔 (�̂�)) = 𝜋2 (𝑓𝑥 :=𝑒,𝜔 (�̂� ′)) =

{𝜀}.
– Let lev(𝑥) = L. Let �̂� =𝜏init �̂�

′
. We have 𝜋2 (𝑓𝑥 :=∗,𝜔 (�̂�)) =

𝜋2 (𝑓𝑥 :=∗,𝜔 (�̂� ′)) = {[𝑟] | 𝑟 ∈ R}.
• Let 𝛼 be ?𝑃 . Since 𝜔 ∈ Sinit (?𝑃), 𝜔 |= 𝑃 . Let �̂� =𝜏init �̂� ′

.

Then, we have 𝜋2 (𝑓?𝑃,𝜔 (�̂�)) = 𝜋2 (𝑓?𝑃,𝜔 (�̂� ′)) = {𝜀}.

• Let 𝛼 be 𝑥 ′ = 𝑒 & 𝑃 . From (𝜔, 𝜏init , 𝜔 ′, 𝜏, 𝜎) ∈ J𝑥 ′ = 𝑒 & 𝑃K𝑇
we infer that there exists some solution 𝜑 : [0, 𝑟] → S for

ODE 𝑥 ′ = 𝑒 , for any 𝑡 ∈ [0, 𝑟] we have 𝜑 (𝑡) ⊨ 𝑃 , 𝜔 = 𝜑 (0)
and 𝜔 ′ = 𝜑 (𝑟). Moreover, 𝜏initJ𝜑 (𝑡) (𝑥)K ⪯ 𝜏initJ𝑥K.
– Let lev(𝑥) ≠ L. Then the property holds since for any

two states �̂� and �̂� ′
, we have the same trivial observable:

𝜋2 (𝑓𝑥 ′=𝑒 & 𝑃,𝜔 (�̂�)) = 𝜋2 (𝑓𝑥 ′=𝑒 & 𝑃,𝜔 (�̂� ′)) = {𝜀}.
– Let lev(𝑥) = L. Then for any 𝑡 ∈ [0, 𝑟], 𝜏initJ𝜑 (𝑡) (𝑥)K = L

according to 𝜏initJ𝜑 (𝑡) (𝑥)K ⪯ 𝜏initJ𝑥K. Let �̂� =𝜏init �̂�
′
. Ac-

cording to Lemma A.3, �̂�J𝜑 (𝑡) (𝑥)K = �̂� ′J𝜑 (𝑡) (𝑥)K. This
entails that observables𝜋2 (𝑓𝑥 ′=𝑒 & 𝑃,𝜔 (�̂�)) = [�̂�J𝜑 (𝑟) (𝑥)K]
and 𝜋2 (𝑓𝑥 ′=𝑒 & 𝑃,𝜔 (�̂� ′)) = [�̂� ′J𝜑 (𝑟) (𝑥)K] are equal.

• Let the HP be 𝛼 ∪ 𝛽 . The induction hypotheses assume that

the property holds for 𝛼 and 𝛽 . Let’s call these hypotheses

as 𝐻 (𝛼) and 𝐻 (𝛽), resp. From (𝜔, 𝜏init , 𝜔 ′, 𝜏, 𝜎) ∈ J𝛼 ∪ 𝛽K𝑇
we infer that (𝜔, 𝜏init , 𝜔 ′, 𝜏, 𝜎) ∈ J𝛼K𝑇 ∪ J𝛽K𝑇 .
– If (𝜔, 𝜏init , 𝜔 ′, 𝜏, 𝜎) ∈ J𝛼K𝑇 , then according to 𝐻 (𝛼), we
have ES ⊨ 𝛼,𝜔 . This entails that for any two low-equivalent
states �̂�, �̂� ′ ∈ Sinit (𝛼), we have the same observables

𝜋2 (𝑓𝛼,𝜔 (�̂�)) = 𝜋2 (𝑓𝛼,𝜔 (�̂� ′)).
– Similarly, if (𝜔, 𝜏init , 𝜔 ′, 𝜏, 𝜎) ∈ J𝛽K𝑇 , then according to

𝐻 (𝛽), we have ES ⊨ 𝛽, 𝜔 . This entails that for any two low-
equivalent states �̂�, �̂� ′ ∈ Sinit (𝛽), we have 𝜋2 (𝑓𝛽,𝜔 (�̂�)) =
𝜋2 (𝑓𝛽,𝜔 (�̂� ′)).

We have 𝑓𝛼∪𝛽,𝜔 (�̂�) = 𝑓𝛼,𝜔 (�̂�) ∪ 𝑓𝛽,𝜔 (�̂�) by definition. This

entails that 𝜋2 (𝑓𝛼∪𝛽,𝜔 (�̂�)) = 𝜋2 (𝑓𝛼,𝜔 (�̂�)) ∪ 𝜋2 (𝑓𝛽,𝜔 (�̂�)).
Using the results from the two above cases, we have then

have 𝜋2 (𝑓𝛼∪𝛽,𝜔 (�̂�)) = 𝜋2 (𝑓𝛼,𝜔 (�̂� ′)) ∪ 𝜋2 (𝑓𝛽,𝜔 (�̂� ′)), which
implies 𝜋2 (𝑓𝛼∪𝛽,𝜔 (�̂�)) = 𝜋2 (𝑓𝛼∪𝛽,𝜔 (�̂� ′)).

• Let the HP be 𝛼 ; 𝛽 . The induction hypotheses assume that

the property holds for 𝛼 and 𝛽 . Let’s call these hypotheses as

𝐻 (𝛼) and𝐻 (𝛽), resp. From (𝜔, 𝜏init , 𝜔 ′, 𝜏, 𝜎) ∈ J𝛼 ; 𝛽K𝑇 we in-

fer that there exist 𝜔0, 𝜏0, 𝜎0, and 𝜎1 such that the following

hold: (𝜔, 𝜏init , 𝜔0, 𝜏0, 𝜎0) ∈ J𝛼K𝑇 , (𝜔0, 𝜏0, 𝜔
′, 𝜏, 𝜎1) ∈ J𝛽K𝑇 ,

and 𝜎 = 𝜎0𝜎1. From (𝜔, 𝜏init , 𝜔0, 𝜏0, 𝜎0) ∈ J𝛼K𝑇 and 𝐻 (𝛼) we
infer that ES ⊨ 𝛼,𝜔 , i.e., for any two low equivalent states

�̂�, �̂� ′ ∈ Sinit (𝛼), we have𝜋2 (𝑓𝛼,𝜔 (�̂�)) = 𝜋2 (𝑓𝛼,𝜔 (�̂� ′)). From
(𝜔0, 𝜏0, 𝜔

′, 𝜏, 𝜎1) ∈ J𝛽K𝑇 and 𝐻 (𝛽) we infer that ES ⊨ 𝛽,𝜔0 ,

i.e., for any two low equivalent states �̂�, �̂� ′ ∈ Sinit (𝛽), we
have 𝜋2 (𝑓𝛽,𝜔0

(�̂�)) = 𝜋2 (𝑓𝛽,𝜔0
(�̂� ′)). Then we have,

𝜋2 (𝑓𝛼 ;𝛽,𝜔 (�̂�)) = 𝜋2 (
⋃

𝜔0:(𝜔,𝜔0,_) ∈J𝛼K𝑈

(𝑓𝛽,𝜔0
⊙ 𝑓𝛼,𝜔) (�̂�))

= 𝜋2
(
{(�̂�1, �̂�0�̂�1) | ∃�̂�0, �̂�0, �̂�1 .(�̂�0, �̂�0) ∈ 𝑓𝛼,𝜔 (�̂�),

(�̂�1, �̂�1) ∈ 𝑓𝛽,𝜔0
(�̂�0)}

)
= {�̂�0�̂�1 | ∃�̂�0 .(�̂�0, �̂�0) ∈ 𝑓𝛼,𝜔 (�̂�),

�̂�1 ∈ 𝜋2 (𝑓𝛽,𝜔0
(�̂�0))}.

Similarly,

𝜋2 (𝑓𝛼 ;𝛽,𝜔 (�̂� ′)) = {�̂� ′
0
�̂� ′
1
| ∃�̂� ′

0
.(�̂� ′

0
, �̂� ′

0
) ∈ 𝑓𝛼,𝜔 (�̂� ′),

�̂� ′
1
∈ 𝜋2 (𝑓𝛽,𝜔0

(�̂� ′
0
))}.

�̂�0 and �̂� ′
0
range over the same set, since 𝜋2 (𝑓𝛼,𝜔 (�̂�)) =

𝜋2 (𝑓𝛼,𝜔 (�̂� ′)). Using Lemma A.4, we infer that �̂�0 =L �̂� ′
0
.

Then, since ES ⊨ 𝛽, 𝜔0 , we have𝜋2 (𝑓𝛽,𝜔0
(�̂�0)) = 𝜋2 (𝑓𝛽,𝜔0

(�̂� ′
0
)).

10

A Semantic Framework for Direct Information Flows
in Hybrid-Dynamic Systems CPSS 2021, June 7th, 2021, Hong Kong, China

Therefore, �̂�1 and �̂�
′
1
range over another set as well, and thus

conclude that 𝜋2 (𝑓𝛼 ;𝛽,𝜔 (�̂�)) = 𝜋2 (𝑓𝛼 ;𝛽,𝜔 (�̂� ′)).
• Let the HP be 𝛼∗. The induction hypothesis assume that the

property holds for 𝛼 . Let’s call these hypothesis as 𝐻 (𝛼).
Let �̂� and �̂� ′

be low-equivalent. We first show that for any

𝑛 ∈ N, the property holds for 𝛼𝑛 . This is done by induction

on 𝑛.

– Let𝑛 = 0. Then the property holds trivially, as𝜋2 (𝑓𝛼0,𝜔 (�̂�)) =
𝜋2 (𝑓𝛼0,𝜔 (�̂� ′)) = {𝜀}.

– Let the property hold for 𝛼𝑘 , i.e., 𝐻 (𝛼𝑘). Since 𝛼𝑘+1 =

𝛼𝑘 ;𝛼 , we use the sequence case (previous case), and as-

sumptions regarding the property on 𝛼𝑘 and 𝛼 (i.e.,𝐻 (𝛼𝑘)
and 𝐻 (𝛼)), and conclude that the property holds for 𝛼𝑘+1.

Therefore, for any 𝑛 ∈ N, the property holds for 𝛼𝑛 . Since

𝑓𝛼∗,𝜔 (𝜔0) =
⋃

𝑛∈N 𝑓𝛼𝑛,𝜔 (𝜔0), the property holds for 𝛼∗.

11

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Threat Model
	1.3 A Motivating Example
	1.4 Paper Outline

	2 A Nondeterministic & Denotational Model of Direct Flows
	3 Explicit Secrecy in Hybrid-Dynamic Systems
	3.1 Syntax and Semantics
	3.2 Instantiating Explicit Secrecy for HPs

	4 ETCS: An Illustrative Example
	5 A Dynamic Tainting Policy for Hybrid-Dynamic Systems
	6 Related Work
	7 Conclusion and Future Work
	References
	A Proofs

