
An Implementation Model for Correct Audit Logging in
Cyber-Physical Systems
Sepehr Amir-Mohammadian

a
, Afsoon Yousefi Zowj

a

aUniversity of the Pacific, 3601 Pacific Ave., Stockton, CA, USA 95211

Abstract
The widespread presence of cyber-physical systems necessitates a reliable assurance mechanism for audit log-

ging across various discrete and continuous components of these systems. This paper explores an implemen-

tation model for cyber-physical systems. We introduce an algorithm designed to equip such systems in ac-

cordance with a formal specification of audit logging requirements, which provably ensures the generation of

accurate audit logs in any instrumented system. The accuracy of the audit log is studied within an information-

algebraic semantic framework of audit logging.

Keywords
Audit Logs, Cyber-Physical Systems, Programming Languages, Security

1. Introduction

Audit logs play a crucial role in enhancing security across various domains by providing a detailed

record of system activities and events. They serve as an indispensable source of information for

detecting and investigating security incidents, breaches, and unauthorized access attempts [1]. By

capturing essential details such as user actions, system configurations, network traffic, and applica-

tion activities, audit logs enable security teams to monitor, analyze, and respond to potential threats

effectively. Moreover, audit logs serve as a deterrent to malicious actors, as the knowledge of being

monitored can dissuade unauthorized activities.

In cyber-physical systems (CPSs), where the integration of physical processes with computing and

networking capabilities is prevalent, audit logging becomes even more critical. These systems are

subject to various security threats, including cyber attacks targeting critical infrastructure [2], in-

dustrial control systems [3] and autonomous vehicles (AVs) [4]. Audit logging in CPSs enables the

tracking of interactions between physical and digital components, which provides insights into sys-

tem behavior, anomalies, and potential vulnerabilities. For instance, in smart grid systems, audit logs

can help detect and prevent unauthorized access to energy distribution networks, ensuring the relia-

bility and integrity of the grid [5]. Similarly, in AVs, audit logs are essential for recording sensor data,

decision-making processes, and helping with the forensic analysis and liability attribution in case of

accidents or cyber attacks [6].

In recent years, information-algebraic models [7], have emerged as valuable semantic frameworks

for audit logging. These models interpret audit logs and the runtime structure of processes as elements

that reside in an information algebra, providing intuitive insights into their information content. The

reliability of audit logging hinges on this interpretation, which compares the information content of

audit logs with that of the program at runtime. Leveraging this framework, an implementation model

" samirmohammadian@pacific.edu (S. Amir-Mohammadian); ayousefizowj@pacific.edu (A.Y. Zowj)

� 0000-0002-2301-4283 (S. Amir-Mohammadian)

© 2024 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:samirmohammadian@pacific.edu
mailto:ayousefizowj@pacific.edu
https://orcid.org/0000-0002-2301-4283
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

has been proposed for linear [8] and concurrent [9] computations, ensuring accurate audit logging

through instrumentation techniques.

In this paper, we explore the application of the aforementioned information-algebraic framework

in CPSs. To this end, we use a programming-linguistic model of CPSs, known as hybrid programs

(HPs) [10, 11, 12]. Hybridity in the context of HPs refers to the simultaneous presence of discrete

computational elements and continuous physical dynamics inherent in CPSs. HPs serve as a fun-

damental programming language for CPSs, allowing for the specification of integrated discrete and

continuous behaviors. We use a variant of HPs, where the semantics is specified operationally (rather

than denotationally) to facilitate the specification of audit log generation at runtime. Our formalism

provides a model for developing CPS tools with correctness guarantees. This language model offers

the following features: i) The language model supports the hybrid nature of CPSs, accommodating

both discrete computational steps and continuous physical behavior. ii) Leveraging a variant of HPs,

our approach benefits from concise syntax and semantics. This facilitates the description of a broad

spectrum of hybrid-dynamic systems. iii) In order to articulate auditing requirements effectively, our

model incorporates timestamps as part of the runtime environment. This enables the specification of

the ordering of significant events. iv) Fundamental to specifying auditing requirements is the abstrac-

tion of secure operations. Named functions serve as these fundamental units. They offer a versatile

tool for expressing auditing needs across different languages and systems.

Utilizing the formalism with the aforementioned features empowers us to model CPSs that ensure

the accurate generation of audit logs in line with the developed semantic framework. In this paper,

we present an instrumentation algorithm designed to modify an HP based on precise audit logging re-

quirements. We demonstrate the correctness of this algorithm, as per the semantic framework, which

ensures that the instrumented concurrent system produces accurate audit logs. The implementation

of audit logging policies through code instrumentation offers a separation of policy from code, which

lays the groundwork for studying the effectiveness of enforcement mechanisms using formal meth-

ods. Additionally, it can be automatically applied to legacy code to bolster system accountability.

An Illustrative Example Let’s consider a simplified scenario to illustrate the necessity of studying

correct audit logging in CPSs. We will revisit this example multiple times throughout the paper. Our

example is an AV system that includes a controller and a physical machinery, and the task is to log

a significant event like hard braking. Here is how such a sequence of events might unfold, culminat-

ing in a log entry: i) The controller continuously monitors the vehicle’s speed and uses sensors to

detect objects in its path. For instance, as the vehicle cruises at 60 mph, a pedestrian unexpectedly

steps onto the road. ii) The detection of a pedestrian in the vehicle’s path triggers the controller’s

obstacle avoidance algorithm. The controller assesses the distance and speed relative to the obstacle.

It calculates that normal braking will not suffice to avoid a collision. iii) Based on the controller’s

decision, a command is sent to the physical machinery to execute a hard brake. iv) The physical ma-

chinery applies the vehicle’s brakes forcefully and quickly to reduce speed dramatically in a short

time. As the hard braking occurs, this critical action is captured as a log event. The system records

this event along with pertinent details such as the vehicle’s speed at the time of braking, the time,

and the location. Retroactively, the log can be reviewed for compliance with safety protocols or used

for improving the decision-making algorithm based on real-world outcomes. In this scenario, the

sequence of detection, decision, execution, and logging is crucial for ensuring both the immediate

safety of the vehicle’s occupants and others on the road, as well as for long-term improvements and

accountability in AV operations.

PaperOutline The rest of the paper is organized as follows: In Section 2, we review the information-

algebraic semantic framework for correct audit logging. In Section 3, we explore the implementation

model for HPs by specifying the source and target language models, as well as the instrumentation

algorithm that maps an HP from the source language to an HP in the target language. In addition,

towards the end of this section the main results of the work are specified. Section 4 discusses the

related work. Finally, Section 5 concludes the paper.

2. Semantics of Audit Logging

In this section, we explore the information-algebraic semantics of audit logging in an informal manner.

The content of this section has originally been explored elsewhere formally [8]. We avoid delving into

the detailed formal presentation here for the sake of economy of space.

2.1. Information-Algebraic Semantic Framework

Audit logs abstract program states into configurations 𝜅, transitioning via 𝜅 ⟶ 𝜅′. A program trace

𝜏 is a sequence of these configurations, with  being all such sequences and 𝑝𝑟𝑒𝑓 𝑖𝑥(𝜏) their initial

segments. A program p or configuration 𝜅 can produce a trace 𝜏 ′, and if 𝜏 ∈ 𝑝𝑟𝑒𝑓 𝑖𝑥(𝜏 ′), we denote

this as p ⇓ 𝜏 or 𝜅 ⇓ 𝜏 .

Information algebra is used to define audit log correctness. In Section 2.2, we use this framework

to represent specific audit logging criteria. An information algebra (Φ, Ψ) consists of Φ, a semigroup

of information elements, and Ψ, a lattice of query domains. It includes combination (⊗) and focusing

(⇒) operations that adhere to specific properties governing their interactions. [7]. In the information

algebra framework, elements 𝑋, 𝑌 ∈ Φ are combined using 𝑋 ⊗ 𝑌 , and information 𝑋 is selectively

extracted using 𝑋⇒𝐸
based on the querying domain 𝐸 ∈ Ψ. The combination of information elements

introduces a partial order, ≼, where 𝑋 ≼ 𝑌 means that combining 𝑋 and 𝑌 results in 𝑌 , indicating 𝑌
contains all the information of 𝑋 .

In audit logging, execution traces are mapped as information elements through ⌊⋅⌋ ∶  → Φ, which

is injective and monotonically increasing, indicating that longer traces contain more information than

their prefixes.

Audit logging requirements are defined abstractly as a logging specification, adaptable to differ-

ent execution models and information formats. Concrete implementations of this specification are

detailed in later sections to guide audit logging practices. The logging specification 𝐿𝑆 ∶  → Φ
describes the information that should be logged for a given execution trace 𝜏 . Note that ⌊⋅⌋ and 𝐿𝑆
both map traces to information elements, but serve different purposes: ⌊𝜏⌋ captures all information

in a trace, while 𝐿𝑆(𝜏) specifies what should be logged during that trace’s execution.

An audit log, denoted as 𝕃, collects data during runtime, with  representing the set of all possible

logs. To assess a log’s correctness, we compare its content to the trace that produced it, using a

mapping ⌊⋅⌋ ∶  → Φ. This mapping must satisfy that larger audit logs contain more information,

by ensuring that ⌊𝕃⌋ ≼ ⌊𝕃′⌋ for 𝕃 ⊆ 𝕃′
. An audit log 𝕃 is deemed correct with respect to a logging

specification 𝐿𝑆 and a program trace 𝜏 if both ⌊𝕃⌋ ≼ 𝐿𝑆(𝜏) and 𝐿𝑆(𝜏) ≼ ⌊𝕃⌋ are satisfied. The former

indicates the necessity of the information in the audit log, while the latter signifies the sufficiency of

that information.

In systems generating audit logs at runtime, these logs are integral to the system’s configuration.

We define 𝑙𝑜𝑔𝑜𝑓 (𝜅) to extract audit logs from any given program configuration, 𝜅. This log expands

as execution progresses. 𝑙𝑜𝑔𝑜𝑓 is used to represent the logs accumulated over a trace. The residual

log of a finite program trace 𝜏 is 𝕃, denoted by 𝜏 ⇝ 𝕃, iff 𝜏 = 𝜅0𝜅1⋯𝜅𝑛 and 𝑙𝑜𝑔𝑜𝑓 (𝜅𝑛) = 𝕃.

An instrumentation algorithm (p, 𝐿𝑆) modifies a program p based on a logging specification 𝐿𝑆 to

add required audit logging. The process results in a target program that generates specified logs.

The instrumentation algorithm should maintain the original program’s semantics while adding

audit logging, ensuring the target program behaves similarly to the source, except for logging dif-

ferences. This concept, called semantics preservation, uses a correspondence relation ∶≈ to link source

and target traces, adaptable to various program implementations. The instrumentation algorithm 
is semantics-preserving if it ensures that for every trace 𝜏 of the original program p, there is a corre-

sponding trace 𝜏 ′ in the instrumented program such that 𝜏 ∶≈ 𝜏 ′, and vice versa. This applies to all

programs p and logging specifications 𝐿𝑆 where (p, 𝐿𝑆) is applicable.

Intuitively,  is correct if the instrumented program generates audit logs that are correct with

respect to the logging specification and the source trace. This criterion must hold for any source

program, any logging specification, and any possible log generated by the instrumented program.

2.2. Instantiation of Logging Specification

The definition of a logging specification maps program traces to information elements, using infor-

mation algebra for practical application. We focus on logical specifications for audit logs, favoring

first-order logic (FOL) for its expressive power and compatibility with logic programming engines.

Other variants of logical frameworks can also be used for this purpose.

To instantiate information algebra, we need to instantiate the set Φ of information elements, the

lattice Ψ of querying domains, and the combination and focusing operators. To this end, we consider

Φ𝐹𝑂𝐿 as the set of closed sets of FOL formulas, established under a proof-theoretic deductive system.

We instantiate Ψ𝐹𝑂𝐿 by considering a query domain as a subset of FOL, defined over specific predicate

symbols, denoted by 𝐹𝑂𝐿(𝑆), where 𝑆 ∈ 𝑃𝑟𝑒𝑑𝑠 is a subset of predicate symbols. Finally, combination

involves taking the closure of the union of two sets of formulas, and focusing entails taking the closure

of the intersection of an information element and a query domain.

To utilize (Φ𝐹𝑂𝐿, Ψ𝐹𝑂𝐿) as a framework for audit logging, we also need to instantiate the map-

ping ⌊⋅⌋. This mapping interprets both execution traces and audit logs as information elements.

We define 𝑡𝑜𝐹𝑂𝐿(⋅) ∶ ( ∪ ) → 𝐹𝑂𝐿(𝑃𝑟𝑒𝑑𝑠) as an injective and monotonically increasing func-

tion. Then, to interpret both traces and logs as information elements in (Φ𝐹𝑂𝐿, Ψ𝐹𝑂𝐿), we instantiate

⌊⋅⌋ = 𝐶𝑙𝑜𝑠𝑢𝑟𝑒(𝑡𝑜𝐹𝑂𝐿(⋅)).
We define a logging specification 𝐿𝑆 using a set of FOL rules Γ and a set of specific predicate symbols

𝑆. This specification maps a trace 𝜏 to predicates in 𝑆 derivable from Γ and events in 𝜏 , i.e., a logging

specification 𝑠𝑝𝑒𝑐(Γ, 𝑆) ∶  → Φ𝐹𝑂𝐿 is defined as 𝑠𝑝𝑒𝑐(Γ, 𝑆) = 𝜏 ↦ (⌊𝜏⌋ ⊗ 𝐶𝑙𝑜𝑠𝑢𝑟𝑒(Γ))⇒𝐹𝑂𝐿(𝑆)
.

3. Implementation Model on Cyber-Physical Systems

This section introduces an implementation model aimed at ensuring accurate audit logging in CPSs.

We employ HPs to define the CPS and put forth an instrumentation algorithm that modifies the pro-

gram according to a given logging specification. Furthermore, we detail and establish pertinent prop-

erties, notably including the correctness of the instrumentation algorithm.

In Section 3.1, we discuss the syntax and semantics of the source program model. Section 3.2 intro-

duces a class of logging specifications adept at specifying temporal relations among computational

events in hybrid-dynamic systems. Following this, Section 3.3 outlines the syntax and semantics of

hybrid programs enriched with audit logging capabilities. Finally, in Section 3.4, we delve into the

instrumentation algorithm and elucidate the properties it adheres.

O1
(𝑡, 𝜔, 𝑥 ∶= 𝑒) ⟶ (𝑡 + 1, 𝜔[𝑥 ↦ 𝜔J𝑒K], 𝜖)

O2
𝑟 ∈ ℝ

(𝑡, 𝜔, 𝑥 ∶=∗) ⟶ (𝑡 + 1, 𝜔[𝑥 ↦ 𝑟], 𝜖)

O3
𝜔 ⊨ 𝑃

(𝑡, 𝜔, ?𝑃) ⟶ (𝑡 + 1, 𝜔, 𝜖)

O4
(𝑓) = [𝑓 (𝑥̄) = 𝛼] 𝜔J𝑒̄K = 𝑟̄
(𝑡, 𝜔, 𝑓 (𝑒̄)) ⟶ (𝑡, 𝜔[𝑥̄ ↦ 𝑟̄], 𝛼)

O5
∃𝑟 ≥ 0, 𝜑 ∶ [0, 𝑟] →  . ((𝜑 solves 𝑥 ′ = 𝑒 on [0, 𝑟]) ∧ (∀𝑡 ∈ [0, 𝑟].𝜑(𝑡) ⊨ 𝑃))

(𝑡, 𝜑(0), 𝑥 ′ = 𝑒 & 𝑃) ⟶ (𝑡 + 𝑟, 𝜑(𝑟), 𝜖)

O6
𝑖 = 1, 2

(𝑡, 𝜔, 𝛼1 ∪ 𝛼2) ⟶ (𝑡 + 1, 𝜔, 𝛼𝑖)

O7
(𝑡, 𝜔, 𝛼) ⟶ (𝑡 ′, 𝜔′, 𝛼 ′)

(𝑡, 𝜔, [𝛼]) ⟶ (𝑡 ′, 𝜔′, [𝛼 ′])

O8
𝛼1 ≡ 𝛼 ′

1 𝛼2 ≡ 𝛼 ′
2 (𝑡, 𝜔, 𝛼1) ⟶ (𝑡 ′, 𝜔′, 𝛼2)

(𝑡, 𝜔, 𝛼 ′
1) ⟶ (𝑡 ′, 𝜔′, 𝛼 ′

2)

Figure 1: Semantics of HPs.

3.1. Source HP Model

We consider HPs as our source language model, refered by  . Syntax and semantics of HPs [12]

are defined in the following, which are grounded in real arithmetic polynomial terms and FOL of real

arithmetic.

We define polynomial terms 𝑒 with rational coefficients over a countably infinite set of variables

 . A polynomial term 𝑒 takes the form 𝑒 ∶∶= 𝑥 | 𝑐 | 𝑒.𝑒 | 𝑒 + 𝑒, where 𝑥 ∈  and 𝑐 ∈ ℚ (a rational

number). A state, 𝜔, is a mapping from variables to real numbers, i.e., 𝜔 ∶  → ℝ. We let 𝑟 ∈ ℝ to

range over real numbers throughout the paper. The semantics of a polynomial term 𝑒 is determined

by a state, 𝜔J𝑒K, given in the standard form. For example, 𝜔J𝑥K = 𝜔(𝑥), and 𝜔J𝑒.𝑒′K = 𝜔J𝑒K.𝜔J𝑒′K.

The FOL of real arithmetic is syntactically defined by 𝑃 ∶∶= 𝑒 = 𝑒 | 𝑒 ≥ 𝑒 | ¬𝑃 | 𝑃 ∧ 𝑃 | ∃𝑥𝑃 .

Additional syntactic structures, such as disjunction, implication, universal quantification, etc., can be

defined using this minimal syntax. A state 𝜔 models a predicate 𝑃 , denoted by 𝜔 ⊨ 𝑃 in the standard

format. For example, i) 𝜔 ⊨ 𝑒 = 𝑒′ if 𝜔J𝑒K = J𝑒′K, and ii) 𝜔 ⊨ ∃𝑥𝑃 if there exists 𝑟 ∈ ℝ such that

𝜔[𝑥 ↦ 𝑟] ⊨ 𝑃 .

HPs are defined syntactically as follows: 𝛼 ∶∶= 𝑥 ∶= 𝑒 | 𝑥 ∶=∗ | 𝑓 (𝑒̄) | ?𝑃 | 𝑥 ′ = 𝑒 & 𝑃 | 𝛼 ∪𝛼 | 𝛼; 𝛼 | 𝛼 ∗
.

The statement 𝑥 ∶= 𝑒 updates 𝑥 to the value of 𝑒. 𝑥 ∶=∗ updates 𝑥 to a nondeterministic value. 𝑓 (𝑒̄)
refers to invoking function 𝑓 with inputs 𝑒̄. A codebase  maps function names to their definitions:

𝑓 (𝑥̄) = 𝛼 . The statement ?𝑃 is a boolean test. 𝑥 ′ = 𝑒 & 𝑃 is a continuous program with an ordinary

differential equation 𝑥 ′ = 𝑒 and an evolution domain 𝑃 , where 𝑥 ′ denotes the time derivative of 𝑥 .

Continuous programs are restricted to polynomial differential equations. We may specify a vector of

such equations to specify a continuous evolution. We use 𝛼 ∪ 𝛼 for nondeterministic choice, 𝛼; 𝛼 for

sequencing, and 𝛼 ∗
for iterating 𝛼 nondeterministic number of times. We show empty sequence of

HPs with 𝜖.

We define two HPs 𝛼1 and 𝛼2 structurally congruent, 𝛼1 ≡ 𝛼2 according to the following rules: i)

Structural congruence is an equivalence relation. ii) 𝜖; 𝛼 ≡ 𝛼 . iii) 𝛼 ∗ ≡ 𝛼0 ∪ 𝛼1 ∪ ⋯ = ∪𝑖∈ℕ𝛼 𝑖
, where

𝛼 𝑖
is the iteration 𝛼 for 𝑖 times, defined as 𝛼0 =?⊤ and 𝛼 𝑖+1 = 𝛼 𝑖 ; 𝛼 . iv) 𝛼1 ≡ 𝛼2 implies [𝛼1] ≡ [𝛼2],

where  is the evaluation context and is defined as  ∶∶= [] |  ; 𝛼 | 𝜖;  .

Having defined HPs syntactically, we define a program as an HP 𝛼p along with the codebase of all

defined functions, i.e., p = ⟨𝛼p,⟩. We assume that 𝛼p simply invokes the specific function 𝑚𝑎𝑖𝑛().
We define 𝜅 ∶∶= (𝑡, 𝜔, 𝛼) where 𝑡 ∈ ℝ≥0

is a timestamp. Accordingly, we define the timestamped

operational semantics of HPs in Figure 1. According to rule O1, 𝑥 ∶= 𝑒 updates the state 𝜔 by mapping

𝑥 to the value of 𝑒 in 𝜔. In rule O2, 𝜔 is updated with 𝑥 being mapped to a nondeterministic real value.

?𝑃 is defined only for states that model 𝑃 , without altering the state, according to rule O3. In rule O4,

invoking 𝑓 with inputs 𝑒̄ runs the body of the function in a new state, where fresh parameter names are

mapped to their corresponding polynomial term values. According to ruleO5, 𝑥 ′ = 𝑒 & 𝑃 is executable

if there exists a solution for the equation 𝑥 ′ = 𝑒 in the domain 𝑃 . In this case, 𝑥 is updated according

to 𝑥 ′ = 𝑒 within some nondeterministic continuous time span [0, 𝑟], where every state update must

satisfy the domain condition 𝑃 . Rule O6 describes how 𝛼1 ∪ 𝛼2 nondeterministically chooses between

𝛼1 and 𝛼2 to run. Rule O7 specifies reduction of sequences of HPs using an evaluation context, and

rule O8 states that reduction follows structural congruence.

Example 3.1. Having introduced HPs as the source language model, let’s revisit the AV example de-
scribed in Section 1. We can describe the AV system as the HP (𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 ; 𝑚𝑎𝑐ℎ𝑖𝑛𝑒)∗, where 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟
is the computational component and 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 is the physical component of the AV (the engine, brak-
ing system, etc.) defined as 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 = (𝑠𝑒𝑛(); (?𝑃1; 𝑎𝑠𝑠𝑒𝑠𝑠(); (?𝑃2; 𝑐𝑚𝑑𝐻𝐵()) ∪ ?¬𝑃2) ∪ ?¬𝑃1)∗ and
𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = 𝑖𝑛𝑖𝑡(); 𝑒𝑣𝑜𝑙𝑣𝑒(), respectively. Function 𝑠𝑒𝑛() retrieves data from speed sensors and environ-
mental sensors to detect obstacles. Predicate 𝑃1 returns true if an obstacle is detected. Function 𝑎𝑠𝑠𝑒𝑠𝑠()
analyzes the data to determine the threat level and appropriate response, e.g., braking level or maneuver.
Predicate 𝑃2 returns true if the threat level is high enough for hard breaking. Function 𝑐𝑚𝑑𝐻𝐵() executes
the hard braking command. In our language model, the command can be described by simply setting
the acceleration parameter to a proper negative value. Function 𝑖𝑛𝑖𝑡() assigns certain initial values for
physical evolution, e.g., time and acceleration (effectively coming from 𝑐𝑚𝑑𝐻𝐵()). Finally, the function
𝑒𝑣𝑜𝑙𝑣𝑒() delineates the temporal progression of the AV’s position through the application of differential
equations. This function is formally expressed as 𝑘′ = 1, 𝑥 ′ = 𝑣, 𝑣′ = 𝑎 & 𝑘 ≤ 𝑝, where 𝑘, 𝑥 , 𝑣, and 𝑎
represent the time, position, velocity, and acceleration of the AV, respectively. Here, 𝑘 is a continuously
increasing time variable. The evolution of the AV’s position, velocity, and timer is confined within its evo-
lution domain, which imposes an upper limit on the driving duration—denoted by 𝑘 ≤ 𝑝. This constraint
ensures that the AV does not operate continuously beyond a pre-set limit of 𝑝 time units for safety reasons,
after which control is transferred back to the 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 .

Instantiation of 𝑡𝑜𝐹𝑂𝐿(⋅) To logically specify a trace, we must instantiate function 𝑡𝑜𝐹𝑂𝐿(⋅). We

consider the following predicates to logically specify a trace: DAssign/3, NDAssign/2, Test/2, Call/3,

Continuum/3, Choice/3, State/2, and Context/2. Note that /𝑛 refers to the arity of the predicate.

We define a function to logically specify a configuration within a trace. For this purpose, we in-

troduce the helper function 𝑡𝑜𝐹𝑂𝐿(𝜅), which returns the logical specification of 𝜅. Let 𝜅 = (𝑡, 𝜔, 𝛼).
We have the following cases: i) If 𝛼 ≡ [𝑥 ∶= 𝑒] then we define the instantiation of the configura-

tion as 𝑡𝑜𝐹𝑂𝐿(𝜅) = {DAssign(𝑡, 𝑥, 𝑒), Context(𝑡, ), State(𝑡, 𝜔)}. ii) If 𝛼 ≡ [𝑥 ∶=∗] then 𝑡𝑜𝐹𝑂𝐿(𝜅) =
{NDAssign(𝑡, 𝑥), Context(𝑡, ), State(𝑡, 𝜔)}. iii) If 𝛼 ≡ [?𝑃] then the instantiation of the configu-

ration is defined as 𝑡𝑜𝐹𝑂𝐿(𝜅) = {Test(𝑡, 𝑃), Context(𝑡, ), State(𝑡, 𝜔)}. iv) If 𝛼 ≡ [𝑓 (𝑒̄)] then we

define 𝑡𝑜𝐹𝑂𝐿(𝜅) = {Call(𝑡, 𝑓 , 𝑒̄), Context(𝑡, ), State(𝑡, 𝜔)}, v) If 𝛼 ≡ [𝑥 ′ = 𝑒 & 𝑃] then we define

𝑡𝑜𝐹𝑂𝐿(𝜅) = {Continuum(𝑡, 𝑥 ′ = 𝑒, 𝑃), Context(𝑡, ), State(𝑡, 𝜔)}. vi) Finally, if ≡ [𝛼1 ∪ 𝛼2] then

𝑡𝑜𝐹𝑂𝐿(𝜅) = {Choice(𝑡, 𝛼1, 𝛼2), Context(𝑡, ), State(𝑡, 𝜔)}. In essence, 𝑡𝑜𝐹𝑂𝐿(𝜅) specifies the evalua-

tion context and the redex within 𝜅. Note that HP constructs, evaluation contexts, and states appear

as predicate arguments in this presentation to enhance readability. Their syntax can be expressed as

string literals to conform with the syntax of predicate logic.

We define the logical specification of traces for both finite and infinite cases based on the logical

specification of configurations, using 𝑡𝑜𝐹𝑂𝐿(𝜅). Let 𝜏 = 𝜅0𝜅1⋯𝜅𝑛 for some 𝑛, then its logical spec-

ification is defined as 𝑡𝑜𝐹𝑂𝐿(𝜏) = ⋃𝑛
𝑖=0 𝑡𝑜𝐹𝑂𝐿(𝜅𝑖). Otherwise, for infinite trace 𝜏 = 𝜅0𝜅1⋯, we have

𝑡𝑜𝐹𝑂𝐿(𝜏) = ⋃𝜏 ′∈𝑝𝑟𝑒𝑓 𝑖𝑥(𝜏) 𝑡𝑜𝐹𝑂𝐿(𝜏 ′), where 𝑡𝑜𝐹𝑂𝐿(𝜏 ′) = ⋃𝑛
𝑖=0 𝑡𝑜𝐹𝑂𝐿(𝜅𝑖), for 𝜏 ′ = 𝜅0𝜅1⋯𝜅𝑛. Showing

that 𝑡𝑜𝐹𝑂𝐿(𝜏) is injective and monotonically increasing can be done straightforwardly.

3.2. Instantiation of Logging Specifications

The class of logging specifications𝑐𝑎𝑙𝑙 is defined to specify temporal relations among function invo-

cations in HPs. Formally,𝑐𝑎𝑙𝑙 is the set of all logging specifications 𝐿𝑆 given by 𝑠𝑝𝑒𝑐(Γ𝐺 , {LoggedCall}),
where Γ𝐺 is a set of Horn clauses referred to as guidelines, including clauses of the form

∀𝑡0, ⋯ , 𝑡𝑛, 𝑥̄0, ⋯ , 𝑥̄𝑛.Call(𝑡0, 𝑓0, 𝑥̄0)
𝑛
⋀
𝑖=1

(Call(𝑡𝑖 , 𝑓𝑖 , 𝑥̄ 𝑖) ∧ 𝑡𝑖 < 𝑡0)∧

𝜑(𝑡0, ⋯ , 𝑡𝑛) ∧ 𝜑′(𝑥̄0, ⋯ , 𝑥̄𝑛) ⟹ LoggedCall(𝑓0, 𝑥̄0), (1)

in which for all 𝑗 ∈ {0, ⋯ , 𝑛} i) 𝑓𝑗 is a function name with a definition in , ii) 𝑥̄ 𝑗 is a placeholder for a

sequence of parameters passed to 𝑓𝑗 , and iii) Call(𝑡𝑗 , 𝑓𝑗 , 𝑥̄ 𝑗) specifies the event of invoking 𝑓𝑗 at time 𝑡𝑗
with parameters 𝑥̄ 𝑗 .

In (1), 𝜑(𝑡0, ⋯ , 𝑡𝑛) represents a potentially empty conjunctive sequence of literals of the form 𝑡𝑖 <
𝑡𝑗 . Additionally, we define triggers and logging events as follows: 𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑠(𝐿𝑆) = {𝑓1, ⋯ , 𝑓𝑛} and

𝐿𝑜𝑔𝑒𝑣𝑒𝑛𝑡(𝐿𝑆) = 𝑓0. The logging preconditions are predicates Call(𝑡𝑖 , 𝑓𝑖 , 𝑥̄ 𝑖) for all 𝑖 ∈ {1, ⋯ , 𝑛}.

Example 3.2. We can define the guideline of the logging specification for the example in Section 1 and
Example 3.1 as follows:

∀𝑡0,𝑡1, 𝑡2, 𝑡3, 𝑥̄0, ⋯ , 𝑥̄𝑛.Call(𝑡0, 𝑒𝑣𝑜𝑙𝑣𝑒, 𝑥̄0) ∧ Call(𝑡1, 𝑐𝑚𝑑𝐻𝐵, 𝑥̄2) ∧ 𝑡1 < 𝑡0 ∧ Call(𝑡2, 𝑎𝑠𝑠𝑒𝑠𝑠, 𝑥̄2)∧
𝑡2 < 𝑡0 ∧ Call(𝑡3, 𝑠𝑒𝑛, 𝑥̄3) ∧ 𝑡3 < 𝑡0 ∧ 𝑡3 < 𝑡2 ∧ 𝑡2 < 𝑡1 ⟹ LoggedCall(𝑒𝑣𝑜𝑙𝑣𝑒, 𝑥̄0).

The guidelines ensures logging the invocations of 𝑒𝑣𝑜𝑙𝑣𝑒() if the functions 𝑠𝑒𝑛(), 𝑎𝑠𝑠𝑒𝑠𝑠(), and 𝑐𝑚𝑑𝐻𝐵()
are called in order before 𝑒𝑣𝑜𝑙𝑣𝑒(). In this specification, we are skipping to list a detailed collection of
inputs for each function for the sake of brevity. As mentioned in Section 1, for instance, 𝑥̄0 could include
different environmental variables, e.g., the location, speed, and acceleration.

3.3. Target HP Model

We extend  to define the target program model, denoted by  log, with the following syntax

and semantics. The task of the instrumentation algorithm is to map a program specified in  to a

program in  log.

HPs are expanded syntactically with two additional constructs: callEvent(𝑓 , 𝑒̄) and emit(𝑓 , 𝑒̄). Note

that 𝑒̄ is treated as a list of expressions rather than a sequence of them in callEvent and emit, ensuring

they have fixed arities.

We extend the configurations in  log with two additional components, as well. A configuration

is defined as 𝜅 ∶∶= (𝑡, 𝜔, 𝛼, Σ, Λ), where Σ is a set of predicates of the form Call(𝑡, 𝑓 , 𝑟̄), where 𝑓 ∈
𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑠. These preconditions are supposed to be gathered, in order to decide whether to log an event.

Λ is the audit log, i.e., the set of predicates of the form LoggedCall(𝑓 , 𝑟̄). The initial configuration is

𝜅0 = (0, 𝜔0, 𝛼, ∅, ∅).
The reduction semantics of  log is given below. Note that  and Γ𝐺 are part of runtime structure,

but for the sake of breveity we avoid annotating each step of reduction with these static structures.

HP

(𝑡, 𝜔, 𝛼) ⟶ (𝑡′, 𝜔′, 𝛼 ′)
(𝑡, 𝜔, 𝛼, Σ, Λ) ⟶ (𝑡′, 𝜔′, 𝛼 ′, Σ, Λ)

CALL_EV

Σ′ = Σ ∪ {Call(𝑡, 𝑓 , 𝜔J𝑒̄K)}
(𝑡, 𝜔, callEvent(𝑓 , 𝑒̄); 𝛼, Σ, Λ) ⟶ (𝑡, 𝜔, 𝛼, Σ′, Λ)

LOG

Σ ∪ Γ𝐺 ⊢ LoggedCall(𝑓 , 𝜔J𝑒̄K) Λ′ = Λ ∪ {LoggedCall(𝑓 , 𝜔J𝑒̄K)}
(𝑡, 𝜔, emit(𝑓 , 𝑒̄); 𝛼, Σ, Λ) ⟶ (𝑡, 𝜔, 𝛼, Σ, Λ′)

NO_LOG

Σ ∪ Γ𝐺 ⊬ LoggedCall(𝑓 , 𝜔J𝑒̄K)
(𝑡, 𝜔, emit(𝑓 , 𝑒̄); 𝛼, Σ, Λ) ⟶ (𝑡, 𝜔, 𝛼, Σ, Λ)

CONTEXT

(𝑡, 𝜔, 𝛼, Σ, Λ) ⟶ (𝑡′, 𝜔′, 𝛼 ′, Σ′, Λ′)
(𝑡, 𝜔, [𝛼], Σ, Λ) ⟶ (𝑡′, 𝜔′, [𝛼 ′], Σ′, Λ′)

 log inherits the operational semantics of  via rule HP. Rule CALL_EV handles reduction

with the callEvent(𝑓 , 𝑒̄) statement, adding Call(𝑡, 𝑓 , 𝜔J𝑒̄K) to Σ. For the emit(𝑓 , 𝑒̄) statement, rule LOG
checks if the predicate LoggedCall(𝑓 , 𝑟̄) is derivable from Σ and Γ𝐺 . If so, it adds it to the audit log Λ;

otherwise, there is no change to the log, as specified by rule NO_LOG.

The residual log of a configuration is given by 𝑙𝑜𝑔𝑜𝑓 (𝜅) = 𝕃 = Λ, where 𝜅 = (_, _, _, _, Λ). This

instantiation defines 𝜏 ⇝ 𝕃 for  log. Since 𝕃 consists of logical literals, 𝑡𝑜𝐹𝑂𝐿(𝕃) = 𝕃 adequately

specifies ⌊𝕃⌋.

3.4. Instrumentation of HPs

In this section, we discuss the instrumentation algorithm tailored for audit logging in HPs. Next, we

review how the semantic preservation can be defined for this algorithm. Lastly, we specify the main

results.

Instrumentation algorithm Instrumentation algorithm  takes an  program p = ⟨𝛼,⟩
and a logging specification 𝐿𝑆 ∈ 𝑐𝑎𝑙𝑙 , and produces a program p′ = ⟨𝛼p,′⟩ in  log. The details

of how  modifies the codebase  is given in the following. Let (𝑓) = [𝑓 (𝑥̄) = 𝑒]. We have three

cases: i) If 𝑓 ∈ 𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑠(𝐿𝑆) then ′(𝑓) = [𝑓 (𝑥̄) = callEvent(𝑓 , 𝑥̄); 𝑒]. ii) If 𝑓 ∈ 𝐿𝑜𝑔𝑒𝑣𝑒𝑛𝑡(𝐿𝑆) then

′(𝑓) = [𝑓 (𝑥̄) = callEvent(𝑓 , 𝑥̄); emit(𝑓 , 𝑥̄); 𝑒]. iii) If 𝑓 ∉ 𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑠(𝐿𝑆) ∪ 𝐿𝑜𝑔𝑒𝑣𝑒𝑛𝑡(𝐿𝑆) then ′(𝑓) = (𝑓).
Intuitively, with the invocation of a function 𝑓 , i) If the invocation of 𝑓 serves as a trigger, its execution

must be preceded by a callEvent statement. Consequently, the invocation of 𝑓 is recorded in the set

of logging preconditions Σ, as outlined by the rule CALL_EV. ii) If the invocation of 𝑓 constitutes a

logging event, its execution must also be preceded by a callEvent statement, similar to the previous

scenario. Subsequently, the system evaluates whether this invocation should be logged, which is

determined by the presence of an emit statement (covered by rules LOG and NO_LOG). Following

this evaluation, 𝑓 proceeds with its execution as usual. If the invocation of 𝑓 does not serve as a

trigger nor a logging event, then the function executes without any alteration in behavior.

Example 3.3. For the logging specification in Example 3.2,  injects statements callEvent(𝑠𝑒𝑛, 𝑥̄),
callEvent(𝑎𝑠𝑠𝑒𝑠𝑠, 𝑥̄) and callEvent(𝑐𝑚𝑑𝐻𝐵, 𝑥̄) to the beginning of functions 𝑠𝑒𝑛(), 𝑎𝑠𝑠𝑒𝑠𝑠() and 𝑐𝑚𝑑𝐻𝐵(),
respectively, as these functions are triggers to log. Since 𝑒𝑣𝑜𝑙𝑣𝑒() is the logging event,  modifies the
body of the function to be callEvent(𝑒𝑣𝑜𝑙𝑣𝑒, 𝑥̄); emit(𝑒𝑣𝑜𝑙𝑣𝑒, 𝑥̄); (𝑘′ = 1, 𝑥 ′ = 𝑣, 𝑣′ = 𝑎 & 𝑘 ≤ 𝑝).

Instantiation of trace correspondence relation ∶≈ We instantiate the abstraction of the corre-

spondence relation ∶≈ between source and target traces for  . We establish the source and target

trace correspondence relation as follows: 𝜏1𝜅1 ∶≈ 𝜏2𝜅2 if 𝜅1 = (𝑡, 𝜔, 𝛼1), 𝜅2 = (𝑡, 𝜔, 𝛼2, Σ, Λ), and

𝑡𝑟 𝑖𝑚(𝛼2) = 𝛼1. The function 𝑡𝑟 𝑖𝑚 essentially eliminates any callEvent and emit statements that 

may introduce to an HP. 𝑡𝑟 𝑖𝑚 can be defined as follows: i) 𝑡𝑟 𝑖𝑚(callEvent(𝑓 , 𝑒̄)) = 𝑡𝑟𝑖𝑚(emit(𝑓 , 𝑒̄)) = 𝜖.

ii) 𝑡𝑟 𝑖𝑚(𝛼1 ∪ 𝛼2) = 𝑡𝑟𝑖𝑚(𝛼1) ∪ 𝑡𝑟𝑖𝑚(𝛼2). iii) 𝑡𝑟 𝑖𝑚(𝛼1; 𝛼2) = 𝑡𝑟𝑖𝑚(𝛼1); 𝑡𝑟 𝑖𝑚(𝛼2). iv) 𝑡𝑟 𝑖𝑚(𝛼 ∗) = (𝑡𝑟𝑖𝑚(𝛼))∗.
v) Otherwise, 𝑡𝑟 𝑖𝑚(𝛼) = 𝛼 .

Main Results Main properties include two results. The instrumentation algorithm  is seman-

tics preserving, and is correct. Proofs of the theorems are given in the accompanying technical report

[13].

4. Related Work

Hybrid-dynamic models may use programming languages techniques to specify CPSs, particularly

through HPs, as we have employed in this paper. Along with HPs, there are two other major ap-

proaches to formally model CPSs: Hybrid automata, which describe a hybrid system through a finite

state transition system that captures both discrete and continuous variables in each state [14, 15], and

hybrid process calculi [16, 17, 18, 19], which model CPSs in terms of agents representing physical

plants and cyber components. These agents communicate through named channels, and in systems

like CCPS [18], a labeled transition system demonstrates how such agents execute using shared chan-

nels.

There is a rich body of work on audit logging in CPSs as one of the necessary components of

cybersecurity assurance in this domain [20]. More recent examples include developing an account-

ability system for autonomous robots [21], a microservices-based architecture for industrial Internet

of Things and CPSs [22], and enhancing realtime CPSs with audit logging capabilities [6, 23]. These

proposals have architectural approaches to audit logging, whereas we study audit logging from a pro-

gramming point of view and establish formal guarantees about the quality of the generated logs in

CPSs.

Information-algebraic models [7] have been used within the last decade to specify and enforce

correct audit logging in different realms of computation, initially in linear functional settings [8].

Moreover, this framework has been utilized to identify and analyze direct information flows in Java-

like languages [24, 25]. It has also inspired investigations into audit logging correctness in concurrent

systems [9], which has facilitated the study of correct audit logging in microservices [26, 27].

5. Conclusion and Future Work

This paper introduces an algorithm designed to implement precise audit logging in CPSs by instru-

menting hybrid programs according to formal audit logging requirements specified using Horn clause

logic. Our approach maintains the original program’s semantics, altering only audit-related opera-

tions. We prove that our algorithm consistently produces accurate audit logs, effectively avoiding

unnecessary or missing logging events.

Future work will extend our audit logging research to practical environments in CPSs, adapting

and testing our methodology across different programming languages and technologies to enhance

its applicability and robustness for real-world use.

References

[1] R. Ávila, R. Khoury, R. Khoury, F. Petrillo, Use of security logs for data leak detection: a system-

atic literature review, Secur. Commun. Networks 2021 (2021) 1–29.

[2] M. Lehto, Cyber-attacks against critical infrastructure, in: Cyber security: Critical infrastructure

protection, Springer, 2022, pp. 3–42.

[3] T. Alladi, V. Chamola, S. Zeadally, Industrial control systems: Cyberattack trends and counter-

measures, Computer Communications 155 (2020) 1–8.

[4] K. Kim, J. S. Kim, S. Jeong, J.-H. Park, H. K. Kim, Cybersecurity for autonomous vehicles: Review

of attacks and defense, Computers & security 103 (2021) 102150.

[5] P. Kumar, Y. Lin, G. Bai, A. Paverd, J. S. Dong, A. Martin, Smart grid metering networks: A

survey on security, privacy and open research issues, IEEE Communications Surveys & Tutorials

21 (2019) 2886–2927.

[6] A. Bansal, A. Kandikuppa, C.-Y. Chen, M. Hasan, A. Bates, S. Mohan, Towards efficient auditing

for real-time systems, in: ESORICS, Springer, 2022, pp. 614–634.

[7] J. Kohlas, J. Schmid, An algebraic theory of information: An introduction and survey, Informa-

tion 5 (2014) 219–254.

[8] S. Amir-Mohammadian, S. Chong, C. Skalka, Correct audit logging: Theory and practice, in:

Principals of Security and Trust, 2016, pp. 139–162.

[9] S. Amir-Mohammadian, C. Kari, Correct audit logging in concurrent systems, Electronic Notes

in Theoretical Computer Science 351 (2020) 115–141.

[10] A. Platzer, Differential dynamic logic for hybrid systems, Journal of Automated Reasoning 41

(2008) 143–189.

[11] A. Platzer, The complete proof theory of hybrid systems, in: 2012 27th Annual IEEE Symposium

on Logic in Computer Science, IEEE, 2012, pp. 541–550.

[12] A. Platzer, Logical foundations of cyber-physical systems, volume 662, Springer, 2018.

[13] S. Amir-Mohammadiah, Technical Report: Correct Audit Logging in Hybrid-Dynamic Systems,

Technical Report, University of the Pacific, 2024. URL: https://rb.gy/s97o48.

[14] R. Alur, C. Courcoubetis, T. A. Henzinger, P.-H. Ho, Hybrid automata: An algorithmic approach

to the specification and verification of hybrid systems, in: Hybrid systems, Springer, 1992, pp.

209–229.

[15] T. A. Henzinger, The theory of hybrid automata, in: Verification of digital and hybrid systems,

Springer, 2000, pp. 265–292.

[16] V. Galpin, L. Bortolussi, J. Hillston, Hype: Hybrid modelling by composition of flows, Formal

Aspects of Computing 25 (2013) 503–541.

[17] I. Lanese, L. Bedogni, M. Di Felice, Internet of things: a process calculus approach, in: SAC,

2013, pp. 1339–1346.

[18] R. Lanotte, M. Merro, A calculus of cyber-physical systems, in: ICALP, Springer, 2017, pp.

115–127.

[19] R. Lanotte, M. Merro, A semantic theory of the internet of things, Information and Computation

259 (2018) 72–101.

[20] R. Mitchell, I.-R. Chen, A survey of intrusion detection techniques for cyber-physical systems,

ACM Computing Surveys (CSUR) 46 (2014) 1–29.

[21] L. Fernández-Becerra, Á. Manuel Guerrero-Higueras, F. J. Rodríguez-Lera, V. Matellán, Account-

ability as a service for robotics: Performance assessment of different accountability strategies for

autonomous robots, Logic Journal of the IGPL 32 (2024) 243–262.

[22] J. Dobaj, J. Iber, M. Krisper, C. Kreiner, A microservice architecture for the industrial internet-

of-things, in: EuroPLoP), 2018, pp. 1–15.

[23] A. Bansal, A. Kandikuppa, M. Hasan, C.-Y. Chen, A. Bates, S. Mohan, System auditing for real-

time systems, TOPS 26 (2023) 1–37.

[24] S. Amir-Mohammadian, C. Skalka, In-depth enforcement of dynamic integrity taint analysis, in:

https://rb.gy/s97o48

Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security,

2016, pp. 43–56.

[25] C. Skalka, S. Amir-Mohammadian, S. Clark, Maybe tainted data: Theory and a case study, Journal

of Computer Security 28 (2020) 295–335.

[26] S. Amir-Mohammadian, A. Y. Zowj, Towards concurrent audit logging in microservices, in:

STPSA 2021, 2021, pp. 1357–1362.

[27] N. D. Ahn, S. Amir-Mohammadian, Instrumenting microservices for concurrent audit logging:

Beyond Horn clauses, in: STPSA 2022, 2022, pp. 1762–1767.

	1 Introduction
	2 Semantics of Audit Logging
	2.1 Information-Algebraic Semantic Framework
	2.2 Instantiation of Logging Specification

	3 Implementation Model on Cyber-Physical Systems
	3.1 Source HP Model
	3.2 Instantiation of Logging Specifications
	3.3 Target HP Model
	3.4 Instrumentation of HPs

	4 Related Work
	5 Conclusion and Future Work

