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Abstract—This paper presents a novel implementation of an
augmented reality-aided indoor navigation system for mobile
devices. The proposed system uses the device’s camera to scan
the environment, generate an abstracted 3D map of the indoor
environment, and transfer it to a remote server. The 3D map
of the indoor environment is achieved through a tracking and
mapping ARKit module. Once the indoor map is stored in the
server, it can be accessed simultaneously by multiple devices
for localization and navigation. Leveraging Unity assets and the
directions retrieved from the server, the application computes
the shortest distance between the source and destination, and
displays AR-based direction markers for navigation assistance.

Index Terms—Augmented reality, Indoor navigation systems,
Simultaneous localization and mapping

I. INTRODUCTION

In recent years, the problem of navigating an object has

been a popular topic of research. While outdoor navigation has

reached a commercial-level efficiency [1], indoor navigation

systems (INS) are still trailing the success of their outdoor

counterparts. Outdoor navigation systems have gained popular-

ity using inertial-GPS trackers since the early 2000s [2]. The

most widely used commercially available indoor navigation

systems use Bluetooth Lite (BLE) beacon technology [3].

However, BLE beacons suffer in terms of efficiency compared

to the techniques that are common in outdoor navigation

systems. Wi-Fi, lidar, and infrared sensors are also being used

for indoor navigation [4].

Among different approaches to implement INSs, vision-

based solutions are appealing as they provide better system

usability and operability. Vision-based techniques resonate

well with how humans identify physical environments, i.e., by

associating various unique landmarks and objects within the

environment. A vision-based INS usually includes a network

of unique markers [5]. These markers could be QR codes,

barcodes, ArUco markers or other customized patterns [6]. The

user navigates their way through the environment, scanning

the identification markers with their mobile cameras. While

this approach provides a straightforward implementation with

high accuracy, it is highly dependent on user’s accessibility

to these markers. If a marker is not placed in an easily-

approachable location, finding the subsequent markers could

be time-consuming and/or confusing. Furthermore, establish-

ing a new vision-based INS in an unfamiliar location can

be quite tedious. A better alternative is to use simultaneous

localization and mapping.

Simultaneous localization and mapping (SLAM) is a com-

putational problem that tries to realize whether it is possible

for a mobile machine to be placed in an unknown environment

and incrementally construct a 3D representation of that envi-

ronment while simultaneously localizing itself in that environ-

ment [7]. The applications of SLAM include indoor cleaners,

self-driving vehicles, autonomous robots, and in particular

extended reality [8]. With the advancements in the smart

mobile device camera technologies, both iOS and Android

operating systems have incorporated native augmented reality

[9] software development kits, viz. ARKit [10] and ARCore

[11], respectively. However, the accuracy of these systems and

the complexity of conditions for creating maps and installing

technologies that could be leveraged for navigation purposes

has been challenging [12], e.g., wrt storage and retrieval of

3D point clouds.

There are several methods of implementing SLAM such as

extended Kalman filter [13], parallel tracking and mapping

[14], large-scale direct monocular SLAM [15], and Oriented-

FAST and Rotated-BRIEF SLAM [16]. One of the key features

for a solution to the SLAM problem is estimating the unknown

values using known ones. The known values are sensor-

based values taken from the environment. In the case of

visual SLAM, various types of sensors could be used, e.g.,

RGB cameras, lidar, radar, monocular cameras, and stereo

cameras. The input stream of values from these sensors are

then fed to a feature extraction algorithm e.g., Scale Invariant

Feature Transform [17], Speeded Up Robust Features [18], and

Oriented-FAST and rotated-BRIEF [19]. The most commonly

used features are corners, intersections, edges, and color

intensity. These extracted features are then passed on to the

pose-estimation phase, where the movement of these features

is tracked in the input stream. Through the movement of the

extracted features, a 3D map is created. Finally, loop closure

and bundle adjustment steps are used to refine the constructed

map. Figure 1 demonstrates the steps through which visual

SLAM process constructs and refines the 3D map.

In this paper, we propose a markerless, vision-based, cost-

effective, and realtime solution for indoor navigation using vi-

sual SLAM. The ability of visual SLAM to work on monocular
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Fig. 1. General steps in visual SLAM.

camera systems is essential to the proposed system, since our

proposed system is aimed to work on a mobile device’s built-

in camera. Advancements over the years in computer vision

algorithms have shown the high potential of visual SLAM in

a mobile device that possesses a monocular camera [20]. For

the sake of scalability, and considering the aforementioned

challenges associated with AR SDKs on mobile platforms,

we have employed a recently incorporated ARKit module,

known as ARWorldMap [21]. ARWorldMap allows users to

create location-based 3D point cloud maps, by constructing

objects that contain the snapshot of all relevant information,

e.g., coordinates and object identifiers.

Contributions. INSs are still maturing [22]. In this paper,

we are aiming to overcome the limitations of the existing

methodologies using vision-based techniques with the features

given in the following. Ultimately these features aim to boost

the usability and operability of our system in comparison to

other proposed INSs.

• Markerlessness: One of the common and prominent limi-

tations of the existing vision-based systems is the constant

need for scanning the markers after every few steps. This

results in a relatively slow traversal process. Our proposed

system is an implementation of vision-based INS that

completely eliminates the need for markers, hence being

markerless.

• Efficient initial positioning: Yet another limitation of

existing vision-based systems is localizing the initial

position of the device. For instance, in a marker based

INS, if the device is not placed in the right place, finding

the location of the nearest marker can be a challenging

task. This is a significant usability concern. Leveraging a

SLAM-based solution tackles this issue.

• Realtimeness: As the client launches the application on

their mobile device, the device quickly scans the envi-

ronment on the go, and is able to perceive its location by

matching the current image frames with the pre-stored

3D map of the environment on the server. This entails

realtime localization.

• Cost-efficiency: With the advancements in the computa-

tional capabilities and built-in cameras of smart mobile

devices, the need to acquire additional hardware for

scanning purposes is eliminated. Modern mobile devices

process many of the computationally-intensive operations

that used to be offloaded to remote services due to lack

of resources.

• Reducing traversal speed: Being markerless provides a

more seamless and faster navigation experience for the

end user compared to the marker-based alternatives. This

eliminates the need to be in the vicinity of the marker’s

location for scanning it. Additionally, the client-server

pipeline is only used to communicate the key points. The

rest of the computation takes place within the mobile de-

vice. This entails a significantly faster solution compared

to the ones dependent on server-side computations.

• Security and privacy: The client-server pipeline is secured

with TLS protocol for exchanging localization coordi-

nates. Moreover, the exact location of the client and the

destination point are not revealed to the server, as the

server blindly sends the whole 3D map of the current

environment to the client.

Paper outline. In Section II, we review different technolo-

gies that have been used in the wild to deploy INSs. In Section

III, we specify our proposed system in a high-level manner,

and discuss our prototype implementation. Section IV reviews

the related work, and finally Section V concludes the paper

and specifies future work.

II. INDOOR NAVIGATION SYSTEMS

In this section, we first distinguish INSs from Indoor

Positioning Systems (IPSs). Next, we provide a brief survey

of existing technologies in INSs.

A. Indoor positing and navigation

Positioning is a process by which a system understands

its location wrt an identified reference frame. This reference

frame usually consists of a network of pre-calibrated stationary

devices or markers. For outdoor environments, GPS satellites

are used for accurate localization. However, using GPS in

indoor environments is challenging due to signal attenuation

and reflection. Wi-Fi/Li-Fi, BLE, and infrared transmitters for

indoor positioning deal with the same challenges, as well.

These issues are eliminated when it comes to vision-based

positioning.

An indoor navigation system may use an indoor positioning

system to identify the initial location of a device. Navigation

computes a path from the initial location of the device to

the desired destination, and helps the device using sequential

step-by-step directions to traverse that path. The path is

usually calculated according to the distance, traffic, number

of obstacles along the path, and other environment-specific

custom parameters.

B. Existing technologies in INSs

The existing technologies for implementing an INS are

broadly classified into two categories: internal sensory based

systems, and external environment based systems.

1) Internal sensory based INSs: Nowadays, the majority

of smart mobile devices are equipped with several sensors,

collecting ever-evolving environmental data. These sensors

take quantitative readings of information including the in-

ertial, acceleration and magnetic forces. The accelerometers

are used to measure the inertial changes to sense motion.

Interdevice sensors such as gyroscopes and magnetometers

measure the change in the magnetic fields to sense values

such as orientation, velocity, and position of the device. The
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most widely adapted approach to work with interdevice sensor

data uses the dead-reckoning algorithm [23]. The advantages

of using these built-in sensors include negligible extra cost of

implementing IPSs. Employing these sensors provides some

level of performance efficiency even after there is a change in

the external environment. This entails environmental indepen-

dence. In addition, it provides some level of privacy, since all

computations are performed locally on the device. On the other

hand, accuracy of these sensors is questionable. Localization

only works after determining the initial position, and any

change that affects the magnetic fields of the environment can

result in incorrect interpretation of location [4].

2) External environment based INSs: The external environ-

ment based technologies highly depend on the environmental

cues, e.g., signal strength, marker-based location tags, etc. A

network of these cues is constructed for a specific area. In what

follows, we describe two types of external environment based

systems considering the environmental cues that are used.

a) Signal information based systems: These systems are

comprised of signal transmitters and receivers, where one

part is kept stationary (usually transmitters) and the other

component is dynamic. The dynamic component collects

signal information such as strength, time of arrival, time-

difference of arrival, angle of arrival, etc. Based on these

values, algorithms such as trilateration [24], and Bancroft [25]

are used for positioning. Wi-Fi [26], Li-Fi [27], BLE beacons

[3], near-field communication [28], and infrared sensors [29]

fall under this category. These systems provide increased

accuracy. If the signal emitting devices are static and cali-

brated, localization is independent of any other change in the

environment. Moreover, due to a client-server like protocol,

realtime monitoring of localization is possible, which may

introduce privacy concerns. These systems are prone to error

due to signal attenuation and reflection in indoor environments.

In addition, device calibration is not trivial and it has to stay

static once configured. Another disadvantage is that the entire

network of transmitters is costly.

b) Vision-based systems: This approach is gaining more

popularity due to the recent advancements in AR technology.

The device built-in cameras are used to recognize environ-

mental marker-based and markerless cues. Most commonly,

QR codes, barcodes, or custom markers are employed to

recognize the indoor locations [4]. This approach is com-

paratively cheaper than the rest of the techniques for INSs,

as it does not require additional hardware. It is also highly

accurate and maintains user privacy, e.g., regarding user’s

location. However, the marker-based systems require the users

to constantly move close to the markers for scanning as they

traverse the path, which is challenging for timely navigation.

Moreover, the camera resolution is influential in the quality of

the service.

III. PROPOSED SYSTEM

Our proposed system [30] consists of two phases: 1)

Generating 3D map of the environment, and 2) localization

of the device using the ARWorldMap coordinates. Figure 2

Fig. 2. The proposed system architecture.

demonstrates the high-level architecture of the system which

consists of different functionalities being invoked by the smart

mobile devices (clients) and different components of the server

to accomplish navigation.

A. Generating a 3D point cloud

Initially, a 3D map of the environment is constructed for

the purpose of localization in the next phase. The client-

side application scans the environment and places the loca-

tion tags on the generated structure according to the user

requests. The shortest route between the location tags is

computed simultaneously using A* algorithm. This is done by

developing a customized, feature-based keypoint point cloud

in an ARWorldMap format. This structure, called keypoint

descriptor, is then stored in a shared remote server. The format

of the descriptor is as follows.

{ Key_point ID:
[ARWorldMap_file, location_tags] }

Each element in this database has a Key_point ID which

is an arbitrarily generated unique identifier of the environment.

The values associated with an identifier include the 3D map of

the environment that is described by a collection of keypoints

(in ARWorldMap_file) and a list of location_tags.

Location tags consist of all the locations of interest, identified

by the user at the time of generating the 3D map. These

tags are potential source and destination points for naviga-

tion. The shortest path among the location tags is stored in

ARWorldMap_file using a spanning tree structure.

B. Localization and navigation

Once the environment is scanned and the keypoint descrip-

tor is uploaded to the server, the system is ready to step into the

second phase, i.e., localization of different smart mobile de-

vices for navigation. First, a mobile device (client application)

queries the server for the 3D map of the environment using

the unqiue identifier associated with that environment, i.e.,

Key_point ID. After retrieving the corresponding keypoint

descriptor, it is extracted by the client. The client then scans

the surrounding environment, matching the current keypoints

with the retrieved ones to localize its position. This way, the

client realizes its location within the 3D map.
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For navigation, the client relies on the matched current

coordinates and the destination name that is given as a location

tag within the keypoint descriptor. Then the client uses the

shortest path information coming from the keypoint descriptor,

and displays AR-based direction markers.

C. Prototype implementation details

We have built our navigation solution leveraging ARKit,

Apple’s augmented reality SDK, which is essential and appeal-

ing for many iOS-based AR systems as it provides different

customizations and open-source pre-built functions. Unlike

other AR SDKs, ARKit provides a low power, cost-efficient,

and jitter-free solution. The framework consists of three major

modules: ARSceneKit, ARWorldMap, and Unity plugin for

ARKit. ARSceneKit facilitates adding 3D objects in an AR

environment. AR objects are taken from Unity’s Asset Store,

which in our application are AR Texts, being used to anchor

various location names with the environment, e.g., different

office names, hall entries, etc. ARSceneKit creates an AR

experience through merging these 3D objects with the camera

view of the real world [31]. The AR experience is achieved

by rendering these 3D objects over the live feed from the

camera. ARKit then matches the real-world moments of the

device with the SceneKit [32] camera.

The mapping module which is used in the scanning of

the environment and creating a 3D map of it, employs AR-

WorldMap. This creates a keypoint point cloud, embedded in

ARWorldMap_file. The coordinates of the next keypoint

is created based on the relative location of the previously

generated coordinates. Therefore, for faster scanning of the

environment the camera should be positioned in a way that

previously generated keypoints and location tags are visible,

as confirmed by our experiments.

In the localization phase, ARKit tracking modules are

employed to find the location of a mobile device by matching

the observed features with the keypoint descriptor that is sent

by the server. In this process, G2O module [33] is used

for optimizing nonlinear least squares problems that can be

embedded as a graph or as a hypergraph.

We have deployed the shared remote server on an NGINX

server [34] that is used to store and retrieve the 3D map

constructions along with the shortest paths between location

tags. Samples of 3D maps from our test runs for a two-story

building is visualized and depicted in Figure 3. The 3D recon-

struction of this map is accomplished using an open-source

monocular visual SLAM framework known as OpenVSLAM

[35]. The visualization of the 3D map is done using a rapid

development library for abstracting video input, known as

Pangolin [36], along with G2O for graph optimizations.

Apple’s Socket and Socket Streams modules [37] are used

in both the storage of keypoint descriptors in the server

(phase 1), and the retrieval of them by the client applications

(phase 2). Using HTTPS through these modules, the client-

server communication channel is secured. In addition, since

the client application queries the server by only providing the

corresponding keypoint identifier of the environment, the exact

Fig. 3. A sample 3D map generated by the SLAM server.

location is not revealed to the server. This provides some level

of privacy for the application users.

Our test runs demonstrate that in the localization phase, it

takes 3-4 seconds to load and place the AR location tags in en-

vironments with sufficient amount of light. In darker locations,

initial localization takes 5-7 seconds. In a completely dark

environment, however, localization is not successful. Once

loaded, the location tags remain in their designated position

even with oriented, rotated and fast movements of the camera.

The algorithm to find the shortest path and generate corre-

sponding relative directional markers on the mobile device

works in realtime. Figure 4 shows sample screenshots of the

mobile application at the time of navigation.

One of the limitation that we have found during system tests,

deals with the plain, solid-colored walls while constructing the

map. This is quite common in any feature extracting algorithm,

since the featured keypoints are usually the corners, edges

and sudden color intensity difference in an image. Having

monochrome walls makes it difficult for the algorithm to

extract feature points.
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Fig. 4. Sample screenshots of mobile application helping to navigate the user.

IV. RELATED WORK

When it comes to vision-based indoor navigation systems,

there are two types of methods to implement an IPS/INS:

Marker and Markerless [38]. Generally, this marker is a

unique, distinguished landmark identifier which can be easily

detected by camera. When a system recognizes these markers,

it adds them to the database with relevant information such

as location tags, current coordinate information of the marker,

etc. Kim et al. [5] use unique markers distinguished from the

background. The remote server receives a sequence of image

frames from a hand-held camera, where these markers are

identified and the associated location information is retrieved.

Based on this information, AR markers are generated on a

head mounted display. Raj et al. [39] use QR codes as mark-

ers. Their system has the advantage of providing additional

privacy, as all computations are performed locally. However,

a common disadvantage of using a visual marker based INS

is the lack of realtime positioning feedback of the device. De

Oliveria et al. [40] propose custom AR fiducial markers and

use bluetooth beacons to provide INS for wheelchair users.

This implementation blends visual markers with the beacon

technology to get the realtime information through beacon,

and accommodates precise location tracking through fiducial

markers.

Among markerless implementations, Faragher et al. [41]

have deployed a radio SLAM for IPS, using a point cloud

generated from the data collected by various smartphone

sensors using distributed particle simultaneous localization and

mapping (DPSLAM) algorithm [42]. The main advantage of

this approach is the lack of dependency to any prior knowledge

about the floor plans. Their proposed system includes various

inertial measurement unit sensors, hooked to the user body.

DPSLAM uses an efficient database to maintain the previous

state histories. The particle cloud states are created using the

outdoor GNSS signals before a user enters the building via

signal fingerprinting from a prior map, in a region where

such map is available. GNSS is also used to detect the initial

location of the smartphone before the user enters the building.
We observe a common set of issues in these implemen-

tations. In wireless markerless INS, one of the common

problems is to figure out the initial location of the device.

For visual marker-based implementations, the issue is the lack

of realtime feedback regarding the device’s current location.

Additionally, scanning the fiducial markers along the way is

a usability concern. Our proposed system overcomes these

issues by successfully localizing the initial position without the

need of any visual markers. Furthermore, the proposed INS is

realtime and can be used by multiple clients simultaneously.

V. FUTURE WORK AND CONCLUSION

This paper proposes an indoor navigation system that is

markerless and vision-based, relying on AR SDKs of modern

smart mobile devices, in particular ARKit for iOS platform.

The proposed system consists of a shared remote server to

store and retrieve the 3D maps of indoor environments. In

the initial phase, the mobile device (client) scans environment

using the built-in camera and constructs the 3D map using

ARWorldMap, as well as the shortest paths between user-

defined location tags. These information are then uploaded

to the server, which accommodates indoor navigation for arbi-

trary mobile devices in a later phase. In the navigation phase, a

mobile device can help user navigate the path using directional

markers, after receiving the 3D map of the environment and the

shortest paths between location tags, followed by locating the

device within that environment. The observed limitation of the

proposed system is the reconstruction of the environment with

physical structures without changes in the color intensities.
Although the application is currently limited to iOS plat-

form, the Unity plugin makes it possible to extend the appli-

cation to other platforms as it supports both Android and iOS.

In this regard, we are planning to extend the implementation

to other platforms, in particular Android.
Another potential future work is to study the ways to

integrate the proposed indoor navigation system with existing

mature outdoor navigation systems, with the goal of providing

a seamless experience to the end user.
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