
Foundations for Auditing Assurance

Sepehr
Amir-Mohammadian

University of Vermont
samirmoh@uvm.edu

Stephen Chong
Harvard University

chong@seas.harvard.edu

Christian Skalka
University of Vermont

ceskalka@uvm.edu

ABSTRACT
Retrospective security is an important element of layered security
systems. Auditing is central to the theory and practice of retrospec-
tive security, however, in systems where auditing is used, programs
are typically instrumented to generate audit logs using manual, ad-
hoc strategies. This is a potential source of error even if log auditing
techniques are formal, since the relation of the log itself to program
execution is unclear. This paper focuses on provably correct pro-
gram rewriting algorithms for instrumenting formal logging speci-
fications. Correctness guarantees that execution of an instrumented
program produces sound and complete audit logs, properties de-
fined by an information containment relation between logs and the
program’s logging semantics. As an application example, we con-
sider auditing for break the glass policies, wherein authorization is
replaced by auditing in emergency conditions.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and The-
ory; D.4.6 [Operating Systems]: Security and Protection; F.4.1
[Mathematical Logic and Formal Languages]: Mathematical Logic

General Terms
Algorithms, Languages, Security, Theory

Keywords
Auditing, Security, Programming language semantics

1. INTRODUCTION
Retrospective security is the enforcement of security, or detec-

tion of security violations, after program execution [31, 35, 39].
Many real-world systems use retrospective security. For example,
the financial industry corrects errors and fraudulent transactions
not by prospectively preventing suspicious transactions, but by ret-
rospectively correcting or undoing these problematic transactions.
Another example is a hospital whose employees are trusted to ac-
cess confidential patient records, but who might (rarely) violate this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

trust [15]. Upon detection of such violations, security is enforced
retrospectively by holding responsible employees accountable [40].

Retrospective security is often used in combination with prospec-
tive security methods such as access control [33, 23]. These ap-
proaches coexist since retrospective security cannot be achieved
entirely by prospective computer security mechanisms. Reasons
include that detection of violations may be external to the com-
puter system (such as consumer reports of fraudulent transactions,
or confidential patient information appearing in news media), the
high cost of access denial (e.g., preventing emergency-room physi-
cians from accessing medical records) coupled with high trust of
systems users (e.g., users are trusted employees that rarely violate
this trust) [41]. In addition, remediation actions to address viola-
tions may also be external to the computer system, such as rep-
rimanding employees, prosecuting law suits, or otherwise holding
users accountable for their actions [40].

Auditing underlies retrospective security frameworks and has be-
come increasingly important to the theory and practice of cyber se-
curity. By recording appropriate aspects of a computer system’s
execution an audit log (and subsequent examination of the audit
log) can enable detection of violations, and provide sufficient evi-
dence to hold users accountable for their actions and support other
remediation actions. For example, an audit log can be used to deter-
mine post facto which users performed dangerous operations, and
can provide evidence for use in litigation.

However, despite the importance of auditing to real-world secu-
rity, relatively little work has focused on the formal foundations of
auditing, particularly with respect to defining and ensuring the cor-
rectness of audit log generation. Indeed, correct and efficient audit
log generation poses at least two significant challenges. First, it
is necessary to record sufficient and correct information in the au-
dit log. If a program is manually instrumented, it is possible for
developers to fail to record relevant events. Recent work showed
that major health informatics systems do not log sufficient infor-
mation to determine compliance with HIPAA policies [28]. Sec-
ond, an audit log should ideally not contain more information than
needed. While it is straightforward to collect sufficient informa-
tion by recording essentially all events in a computer system, this
can cause performance issues, both slowing down the system due
to generating massive audit logs, and requiring the handling of ex-
tremely large audit logs. Excessive data collection is a key chal-
lenge for auditing [22, 12, 27], and is a critical factor in the design
of tools that generate and employ audit logs (e.g., spam filters [13]).

A main goal of this paper is to establish a formal foundation for
audit logging, especially to establish general correctness conditions
for audit logs. Our broader goal is to eventually reason about and
implement assured systems combining both prospective and retro-
spective security measures [23]. We define a general semantics of

audit logs using the theory of information algebra [29]. We in-
terpret both program execution traces and audit logs as information
elements in an information algebra. A logging specification defines
the intended relation between the information in traces and in audit
logs. An audit log is correct if it satisfies this relation. A benefit
of this formulation is that it separates logging specifications from
programs, rather than burying them in code and implementation
details.

Separating logging specifications from programs supports clearer
definitions and more direct reasoning. Additionally, it enables algo-
rithms for implementing general classes of logging specifications.
Our formal theory establishes conditions that guarantee enforce-
ment of logging specifications by such algorithms. As we will
show, correct instrumentation of logging specifications is a safety
property, hence enforceable by security automata [37]. Inspired
by related approaches to security automata implementation [20],
we focus on program rewriting to automatically enforce correct au-
dit instrumentation. Program rewriting has a number of practical
benefits versus, for example, program monitors, such as lower OS
process management overhead.

This approach would allow system administrators to define log-
ging specifications which are automatically instrumented in code,
including legacy code. Implementation details and matters such
as optimization can be handled by the general program rewriting
algorithm, not the logging specification. Furthermore, establishing
correctness of a program rewriting algorithm provides an important
security guarantee. Such an algorithm ensures that logging specifi-
cations will be implemented correctly, even if the rewritten source
code contains malicious code or programmer errors.

1.1 A Motivating Example: Break the Glass
Although audit logs contain information about program execu-

tion, they are not just a straightforward selection of program events.
Illustrative examples from practice include so-called “break the
glass policies” used in electronic medical record systems [33]. These
policies use access control to disallow care providers from perform-
ing sensitive operations such as viewing patient records, however
care providers can “break the glass” in an emergency situation to
temporarily raise their authority and access patient records, with the
understanding that subsequent sensitive operations will be logged
and potentially audited. This is a clear example from practice of the
interaction between prospective and retrospective security meth-
ods. One potential accountability goal is the following:

In the event that a patient’s sensitive information is in-
appropriately leaked, determine who accessed a given
patient’s files due to “breaking the glass.”

Since it cannot be predicted a priori whose information may leak,
this goal can be supported by using an audit log that records all
reads of sensitive files following glass breaking. To generate cor-
rect audit logs, programs must be instrumented for logging appro-
priately, i.e., to implement the following logging specification that
we call LSH :

LSH : Record in the log all patient information file
reads following a break the glass event, along with the
identity of the user that broke the glass.

If at some point in time in the future it is determined that a spe-
cific patient P’s information was leaked, logs thus generated can be
analyzed with the following query that we call LQH :

LQH : Retrieve the identity of all users that read P’s
information files.

The specification LSH and the query LQH together constitute an
auditing policy that directly supports the above-stated accountabil-
ity goal. Their separation is useful since at the time of execution the
information leak is unknown, hence P is not known. Thus while it
is possible to implement LSH as part of program execution, LQH
must be implemented retrospectively.

It is crucial to the enforcement of the above accountability goal
that LSH is implemented correctly. If logging is incomplete then
some potential recipients may be missed. If logging is overzealous
then bloat is possible and audit logs become “write only”. These
types of errors are common in practice [28]. To establish for-
mal correctness of instrumentation for audit logs, it is necessary
to define a formal language of logging specifications, and establish
techniques to guarantee that instrumented programs satisfy logging
specifications. That is the focus of this paper. Other work has
focused on formalisms for querying logs [38, 16], however these
works presuppose correctness of audit logs for true accountability.

1.2 Threat Model
With respect to program rewriting (i.e., automatic techniques to

instrument existing programs to satisfy a logging specification), we
regard the program undergoing instrumentation as untrusted. That
is, the program source code may have been written to avoid, con-
fuse, or subvert the automatic instrumentation techniques. We do,
however, assume that the source code is well-formed (valid syntax,
well-typed, etc.). Moreover, we trust the compiler, the program
rewriting algorithm, and the runtime environment in which the in-
strumented program will ultimately be executed. Non-malleability
of generated audit logs, while important, is beyond the scope of this
paper.

2. A SEMANTICS OF AUDIT LOGGING
Our goal in this Section is to formally characterize logging spec-

ifications and correctness conditions for audit logs. To obtain a
general model, we leverage ideas from the theory of information
algebra [30, 29], which is an abstract mathematical framework for
information systems. In short, we interpret program traces as infor-
mation, and logging specifications as functions from traces to in-
formation. This separates logging specifications from their imple-
mentation in code, and defines exactly the information that should
be in an audit log. This in turn establishes correctness conditions
for audit logging implementations.

Following [37], an execution trace τ = κ0κ1κ2 . . . is a possibly
infinite sequence of configurations κ that describe the state of an
executing program. We deliberately leave configurations abstract,
but examples abound and we explore a specific instantiation for a λ-
calculus in Section 4. Note that an execution trace τ may represent
the partial execution of a program, i.e. the trace τ may be extended
with additional configurations as the program continues execution.
We use metavariables τ and σ to range over traces.

An information algebra contains information elements X (e.g. a
set of logical assertions) taken from a set Φ (the algebra). A par-
tial ordering is induced on Φ by the so-called information ordering
relation ≤, where intuitively for X,Y ∈ Φ we have X ≤ Y iff
Y contains at least as much information as X , though its precise
meaning depends on the particular algebra. We assume given a
function b·c that is an injective mapping from traces to Φ. This
mapping interprets a given trace as information, where the injec-
tive requirement ensures that information is not lost in the interpre-
tation. For example, if σ is a proper prefix of τ and thus contains
strictly less information, then formally bσc ≤ bτc. We intention-
ally leave both Φ and b·c underspecified for generality, though ap-
plication of our formalism to a particular logging implementation

requires instantiation of them. We discuss an example in Section 3.
We let LS range over logging specifications, which are func-

tions from traces to Φ. As for Φ and b·c, we intentionally leave the
language of specifications abstract, but consider a particular instan-
tiation in Section 3. Intuitively, LS(τ) denotes the information that
should be recorded in an audit log during the execution of τ given
specification LS , regardless of whether τ actually records any log
information, correctly or incorrectly. We call this the semantics of
the logging specification LS .

We assume that auditing is implementable, requiring at least that
all conditions for logging any piece of information must be met in
a finite amount of time. As we will show, this restriction implies
that correct logging instrumentation is a safety property [37].

Definition 1. We require of any logging specification LS that
for all traces τ and information X ≤ LS(τ), there exists a finite
prefix σ of τ such that X ≤ LS(σ).

It is crucial to observe that some logging specifications may add
information not contained in traces to the auditing process. Secu-
rity information not relevant to program execution (such as ACLs),
interpretation of event data (statistical or otherwise), etc., may be
added by the logging specification. As an example consider the
OpenMRS system [34], in which logging of sensitive operations
includes a human-understandable “type” designation, not used by
any other code. Thus, given a trace τ and logging specification LS ,
it is not necessarily the case that LS(τ) ≤ bτc. Audit logging is
not just a filtering of program events.

2.1 Correctness Conditions for Audit Logs
A logging specification defines what information should be con-

tained in an audit log. In this section we develop formal notions
of soundness and completeness as audit log correctness conditions.
We use metavariable L to range over audit logs. Again, we inten-
tionally leave the language of audit logs unspecified, but assume
that the function b·c is extended to audit logs, i.e. b·c is an injective
mapping from audit logs to Φ. Intuitively, bLc denotes the infor-
mation in L, interpreted as an element of Φ.

An audit log L is sound with respect to a logging specification
LS and trace τ if the log information is contained in LS(τ). Sim-
ilarly, an audit log is complete with respect to a logging specifica-
tion if it contains all of the information in the logging specifica-
tion’s semantics. Crucially, both definitions are independent of the
implementation details that generate L.

Definition 2. Audit log L is sound with respect to logging spec-
ification LS and execution trace τ iff bLc ≤ LS(τ).

Definition 3. Audit log L is complete with respect to logging
specification LS and execution trace τ iff LS(τ) ≤ bLc.

The relation to log queries.
As discussed in Section 1.1, we make a distinction between log-

ging specifications such as LSH which define how to record logs,
and log queries such as LQH which ask questions of logs, and
our notions of soundness and completeness apply strictly to log-
ging specifications. However, any logging query must assume a
logging specification semantics, hence a log that is demonstrably
sound and complete provides the same answers on a given query
that an “ideal” log would. This is an important property that is
discussed in previous work, e.g. as “sufficiency” in [4].

2.2 Correct Logging Instrumentation is a Safety
Property

In case program executions generate audit logs, we write τ ; L
to mean that trace τ generates L, i.e. τ = κ0 . . . κn and logof (κn) =
L where logof (κ) denotes the audit log in configuration κ, i.e. the
residual log after execution of the full trace. Ideally, information
that should be added to an audit log, is added to an audit log, imme-
diately as it becomes available. This ideal is formalized as follows.

Definition 4. For all logging specifications LS , the trace τ is
ideally instrumented for LS iff for all finite prefixes σ of τ we have
σ ; L where L is sound and complete with respect to LS and σ.

We observe that the restriction imposed on logging specifications
by Definition 1, implies that ideal instrumentation of any logging
specification is a safety property in the sense defined by Schneider
[37]1.

THEOREM 1. For all logging specifications LS , the set of ide-
ally instrumented traces is a safety property.

This result implies that e.g. edit automata can be used to enforce
instrumentation of logging specifications. However, theory related
to safety properties and their enforcement by execution monitors
[37, 2] do not provide an adequate semantic foundation for audit
log generation, nor an account of soundness and completeness of
audit logs.

2.3 Implementing Logging Specifications with
Program Rewriting

The above-defined correctness conditions for audit logs provide
a foundation on which to establish correctness of logging imple-
mentations. Here we consider program rewriting approaches. Since
rewriting concerns specific languages, we introduce an abstract no-
tion of programs p with an operational semantics that can produce
a trace. We write p ⇓ τ iff program p can produce execution trace
τ , either deterministically or non-deterministically.

A rewriting algorithm R is a (partial) function that takes a pro-
gram p in a source language and a logging specification LS and
produces a new program, R(p,LS), in a target language.2 The in-
tent is that the target program is the result of instrumenting p to
produce an audit log appropriate for the logging specification LS .
A rewriting algorithm may be partial, in particular because it may
only be intended to work for a specific set of logging specifications.

Ideally, a rewriting algorithm should preserve the semantics of
the program it instruments. That is, R is semantics-preserving if
the rewritten program simulates the semantics of the source code,
modulo logging steps. We assume given a correspondence relation
:≈ on execution traces. A coherent definition of correspondence
should be similar to a bisimulation, but it is not necessarily sym-
metric nor a bisimulation, since the instrumented target program
may be in a different language than the source program. We delib-
erately leave the correspondence relation underspecified, as its def-
inition will depend on the instantiation of the model. Possible def-
initions are that traces produce the same final value, or that traces
when restricted to a set of memory locations are equivalent up to
stuttering. We provide an explicit definition of correspondence for
λ-calculus source and target languages in Section 4.

Definition 5. Rewriting algorithmR is semantics preserving iff
for all programs p and logging specifications LS such thatR(p,LS)
is defined, all of the following hold:
1The proofs of Theorems 1-5 in this text are omitted for brevity,
but are available from the authors upon request.
2We use metavariable p to range over programs in either the source
or target language; it will be clear from context which language is
used.

1. For all traces τ such that p ⇓ τ there exists τ ′ with τ :≈ τ ′

andR(p,LS) ⇓ τ ′.

2. For all traces τ such that R(p,LS) ⇓ τ there exists a trace
τ ′ such that τ ′ :≈ τ and p ⇓ τ ′.

In addition to preserving program semantics, a correctly rewrit-
ten program constructs a log in accordance with the given logging
specification. More precisely, if LS is a given logging specifica-
tion and a trace τ describes execution of a source program, rewrit-
ing should produce a program with a trace τ ′ that corresponds to τ
(i.e., τ :≈ τ ′), where the log L generated by τ ′ contains the same
information as LS(τ), or at least a sound approximation. Some
definitions of :≈ may allow several target-language traces to corre-
spond to source-language traces (as for example in Section 4, Defi-
nition 12). In any case, we expect that at least one simulation exists.
Hence we write simlogs(p, τ) to denote a nonempty set of logs L
such that, given source language trace τ and target program p, there
exists some trace τ ′ where p ⇓ τ ′ and τ :≈ τ ′ and τ ′ ; L. The
name simlogs evokes the relation to logs resulting from simulating
executions in the target language.

The following definitions then establish correctness conditions
for rewriting algorithms. Note that satisfaction of either of these
conditions only implies condition (i) of Definition 5, not condition
(ii), so semantics preservation is an independent condition.

Definition 6. Rewriting algorithm R is sound iff for all pro-
grams p, logging specifications LS , and finite traces τ where p ⇓ τ ,
for all L ∈ simlogs(R(p,LS), τ) it is the case that L is sound with
respect to LS and τ .

Definition 7. Rewriting algorithm R is complete iff for all pro-
grams p, logging specifications LS , and finite traces τ where p ⇓ τ ,
for all L ∈ simlogs(R(p,LS), τ) it is the case that L is complete
with respect to LS and τ .

3. LANGUAGES FOR LOGGING SPECIFI-
CATIONS

We argue that information algebra is an appealing foundation for
logging specifications and semantics, especially since it establishes
a general notion of information containment between information
elements. As we have discussed above, a correct audit log contains
the same information denoted by a logging specification. For a
detailed account of information algebra, the reader is referred to a
definitive survey paper [30]. In short, in addition to a definition of
the elements of Φ, any information algebra Φ includes two basic
operators:

• Combination: The operation X ⊗ Y combines the informa-
tion in elements X,Y ∈ Φ.

• Focusing: The operation X⇒S isolates the elements of X ∈
Φ that are relevant to a sublanguage S, i.e. the subpart of X
specified by S.

Focusing and combination must additionally satisfy certain proper-
ties. The definitions of elements X ∈ Φ, sublanguages S, combi-
nation, and focusing constitute the definition of the algebra. In all
cases, the relation X ≤ Y holds iff X ⊗ Y = Y . Proving that ⊗
has been correctly defined for an algebra implies that ≤ is a partial
order [30].

3.1 Support for Logical Specification
Various approaches are taken to audit log generation and rep-

resentation, including logical [16], database [1], and probabilistic

approaches [42]. Information algebra is sufficiently general to con-
tain relevant systems as instances, so our notions of soundness and
completeness can apply broadly. Here we discuss the logical ap-
proach.

Logics have been used in several well-developed auditing sys-
tems [24, 8], for the encoding of both audit logs and queries. FOL
in particular is attractive due to readily available implementation
support, e.g. Datalog and Prolog.

Let Greek letters φ and ψ range over FOL formulas and let
capital letters X,Y, Z range over sets of formulas. We posit a
sound and complete proof theory supporting judgements of the
form X ` φ. In this text we assume without loss of generality
a natural deduction proof theory.

Elements of our algebra are sets of formulas closed under logical
entailment. Intuitively, given a set of formulas X , the closure of X
is the set of formulas that are logically entailed by X , and thus
represents all the information contained in X . In spirit, we follow
the treatment of sentential logic as an information algebra explored
in related foundational work [29], however our definition of closure
is syntactic, not semantic.

Definition 8. We define a closure operation C, and a set ΦFOL

of closed sets of formulas:

C(X) = {φ | X ` φ} ΦFOL = {X | C(X) = X}

Note in particular that C(∅) is the set of logical tautologies.

Let Preds be the set of all predicate symbols, and let S ⊆ Preds
be a set of predicate symbols. We define sublanguage LS to be
the set of well-formed formulas over predicate symbols in S (and
including boolean atoms T and F , and closed under the usual first-
order connectives and binders). We will use sublanguages to define
refinement operations in our information algebra. Subset contain-
ment induces a lattice structure, denoted S, on the set of all sublan-
guages, with F = LPreds as the top element.

Now we can define the focus and combination operators, which
are the fundamental operators of an information algebra. Focus-
ing isolates the component of a closed set of formulas that is in a
given sublanguage. Combination closes the union of closed sets
of formulas. Intuitively, the focus of a closed set of formulas X
to sublanguage L is the refinement of the information in X to the
formulas in L. The combination of closed sets of formulas X and
Y combines the information of each set.

Definition 9. Define:

1. Focusing: X⇒S = C(X ∩ LS) where X ∈ ΦFOL, S ∈
Preds

2. Combination: X ⊗ Y = C(X ∪ Y) where X,Y ⊆ ΦFOL

These definitions of focusing and combination enjoy a number of
properties within the algebra, as stated in the following Theorem,
establishing that the construction is an information algebra. FOL
has been treated as an information algebra before, but our defini-
tions of combination and focusing and hence the result are novel.

THEOREM 2. Structure (ΦFOL,S) with focus operation X⇒S

and combination operationX⊗Y forms a domain-free information
algebra.

In addition, to interpret traces and logs as elements of this alge-
bra, i.e. to define the function b·c, we assume existence of a func-
tion toFOL(·) that injectively maps traces and logs to sets of FOL
formulas, and then take b·c = C(toFOL(·)). To define the range

of toFOL(·), that is, to specify how trace information will be rep-
resented in FOL, we assume the existence of configuration descrip-
tion predicates P which are each at least unary. Each configuration
description predicate fully describes some element of a configura-
tion κ, and the first argument is always a natural number t, indicat-
ing the time at which the configuration occurred. A set of config-
uration description predicates with the same timestamp describes a
configuration, and traces are described by the union of sets describ-
ing each configuration in the trace. In particular, the configuration
description predicates include predicate Call(t, f, x), which indi-
cates that function f is called at time t with argument x. We will
fully define toFOL(·) when we discuss particular source and target
languages for program rewriting.

EXAMPLE 1. We return to the example described in Section 1.1
to show how FOL can express break the glass logging specifica-
tions. Adapting a logic programming style, the trace of a program
can be viewed as a fact base, and the logging specification LSH
performs resolution of a LoggedCall predicate, defined via the fol-
lowing Horn clause we call ψH :

∀t, d, s, u.(Call(t, read, d) ∧ Call(s,breakGlass, u) ∧ s < t
∧ PatientInfo(d)) =⇒ LoggedCall(t, read, u, d)

Here we imagine that breakGlass is a break the glass function
where u identifies the current user and PatientInfo is a predicate
specifying which files contain patient information. The log contains
only valid instances of LoggedCall given a particular trace, which
specify the user and sensitive information accessed following glass
breaking, which otherwise would be disallowed by a separate ac-
cess control policy.

Formally, we define logging specifications in a logic program-
ming style by using combination and focusing. Any logging spec-
ification is parameterized by a sublanguage S that identifies the
predicate(s) to be resolved and Horn clauses X that define it/them,
hence we define a functional spec from pairs (X,S) to specifica-
tions LS , where we use λ as a binder for function definitions in the
usual manner:

Definition 10. The function spec is given a pair (X,S) and re-
turns a FOL logging specification, i.e. a function from traces to
elements of ΦFOL:

spec(X,S) = λτ.(bτc ⊗ C(X))⇒S .

In any logging specification spec(X,S), we call X the guidelines.

The above example LSH would then be formally defined as
spec(ψH , {LoggedCall}).

4. REWRITING PROGRAMS WITH LOG-
GING SPECIFICATIONS

Since correct logging instrumentation is a safety property (2.2),
there are various implementation strategies. For example, one could
define an edit automata that enforces the property that could be im-
plemented either as a separate program monitor or using inlined
reference monitor (IRM) techniques [20]. But since we are inter-
ested in program rewriting for a particular class of logging speci-
fications, the approach we discuss here is more simply stated and
proven correct than a general IRM methodology.

We specify a class of logging specifications of interest, along
with a program rewriting algorithm that is sound and complete for
it. We consider a basic λ-calculus that serves as a prototypical
case study. The supported class of logging specifications is predi-
cated on temporal properties of function calls and characteristics of

their arguments. This class has practical potential since security-
sensitive operations are often packaged as functions or methods
(e.g. in medical records software [36]), and the supported class al-
lows complex policies such as break the glass to be expressed. The
language of logging specifications is FOL, and we use ΦFOL to
define the semantics of logging and prove correctness of the algo-
rithm.

4.1 Source Language
We first define a source language Λcall, including the defini-

tions of configurations, execution traces, and function toFOL(·)
that shows how we concretely model execution traces in FOL.

Language Λcall is a simple call-by-value λ-calculus with named
functions. A Λcall program is a pair (e, C) where e is an expres-
sion, and C is a codebase which maps function names to function
definitions. A Λcall configuration is a triple (e, n, C), where e is
the expression remaining to be evaluated, n is a timestamp (a nat-
ural number) that indicates how many steps have been taken since
program execution began, and C is a codebase. The codebase does
not change during program execution.

The syntax of Λcall is as follows.

v ::= x | f | λx. e values

e ::= e e | v expressions

E ::= [] | E e | v E evaluation contexts

κ ::= (e, n, C) configurations

p ::= (e, C) programs

The small-step semantics of Λcall is defined as follows.

β

((λx. e) v, n, C)→ (e[v/x], n+ 1, C)

βCall

C(f) = λx. e

(f v, n, C)→ (e[v/x], n+ 1, C)

Context
(e, n, C)→ (e′, n′, C)

(E[e], n, C)→ (E[e′], n′, C)

An execution trace τ is a sequence of configurations, and for a
program p = (e, C) and execution trace τ = κ0 . . . κn we define
p ⇓ τ if and only if κ0 = (e, 0, C) and for all i ∈ 1..n we have
κi−1 → κi.

We now show how to model a configuration as a set of ground
instances of predicates, and then use this to model execution traces.
We posit predicates Call, App, Value, Context, and Codebase to
logically denote run time entities. For κ = (e, n, C), we define
toFOL(κ) by cases, where

〈C〉n =
⋃

f∈dom(C)

{Codebase(n, f , C(f))}3.

3While Λcall expressions and evaluation contexts appear as predi-
cate arguments, their syntax can be written as string literals to con-
form to typical Datalog or Prolog syntax.

toFOL(v, n, C) = {Value(n, v)} ∪ 〈C〉n
toFOL(E[f v], n, C) = {Call(n, f , v),Context(n,E)} ∪ 〈C〉n
toFOL(E[(λx. e) v)], n, C) =

{App(n, (λx.e), v),Context(n,E)} ∪ 〈C〉n

We define toFOL(τ) for a potentially infinite execution trace
τ = κ0κ1 . . . by defining it over its prefixes. Let prefix(τ) denote
the set of prefixes of τ . Then,

toFOL(τ) =
⋃

σ∈prefix(τ)

toFOL(σ),

where

toFOL(σ) = toFOL(κ0) ∪ · · · ∪ toFOL(κn),

for σ = κ0 . . . κn. Function toFOL(·) is injective up toα-equivalence
since toFOL(τ) fully and uniquely describes the execution trace τ .

4.2 Specifications Based on Function Call Prop-
erties

We define a class Calls of logging specifications that capture
temporal properties of function calls, such as those reflected in
break the glass policies. We restrict specification definitions to safe
Horn clauses to ensure applicability of well-known results and to-
tal algorithms such as Datalog [9]. Specifications in Calls support
logging of calls to a specific function f that happen after functions
g1, . . . ,gn are called. Conditions on all function arguments, and
times of their invocation, can be defined via a predicate φ. Hence
more precise requirements can be imposed, e.g. a linear ordering
on function calls, particular values of functions arguments, etc.

Definition 11. Calls is the set of all logging specifications, de-
noted by spec(X, {LoggedCall}), where X contains a safe Horn
clause of the following form:

∀t0, . . . , tn, x0, . . . , xn .

Call(t0, f , x0)

n∧
i=1

(Call(ti,gi, xi) ∧ ti < t0) ∧

φ((x0, t0), . . . , (xn, tn)) =⇒ LoggedCall(t0, f , x0).

While setX may contain other safe Horn clauses, in particular def-
initions of predicates occurring in φ, no other Horn clause in X
uses the predicate symbols LoggedCall, Value, Context, Call,
App, or Codebase. For convenience in the following, we define
Logevent(LS) = f and Triggers(LS) = {g1, ...,gn}.

We note that specifications in Calls clearly satisfy Definition 1,
since preconditions for logging a particular call to f must be satis-
fied at the time of that call.

4.3 Target Language
The syntax of target language Λlog extends Λcall syntax with

a command to track relevant function calls (callEvent(f , v)) and
a command to emit log entries (emit(f , v)). Configurations are
extended to include a set X of relevant function calls, and an audit
log L.

e ::= . . . | callEvent(f , v); e | emit(f , v); e expressions

κ ::= (e,X, n,L, C) configurations

The semantics of Λlog extends the semantics of Λcall with new
rules for commands callEvent(f , v) and emit(f , v), which update
the set of relevant function calls and audit log respectively. An

instrumented program uses the set of relevant function calls to de-
termine when it should emit events to the audit log. The semantics
is parameterized by a guideline XGuidelines , typically taken from a
logging specification. Given the definition of Calls, these seman-
tics would be easy to implement using e.g. a Datalog proof engine.

RelevantCall

(callEvent(f , v); e,X, n,L, C)→
(e,X ∪ {Call(n− 1, f , v)}, n,L, C)

Log
X ∪XGuidelines ` LoggedCall(n− 1, f , v)

(emit(f , v); e,X, n,L, C)→
(e,X, n,L ∪ {LoggedCall(n− 1, f , v)}, C)

NoLog
X ∪XGuidelines 6` LoggedCall(n− 1, f , v)

(emit(f , v); e,X, n,L, C)→ (e,X, n,L, C)

Note that to ensure that these instrumentation commands do not
change execution behavior, the configuration’s time is not incre-
mented when callEvent(f , v) and emit(f , v) are evaluated. That
is, the configuration time counts the number of source language
computation steps.

The rules Log and NoLog rely on checking whether XGuidelines

and relevant function calls X entail LoggedCall(n− 1, f , v). This
can be accomplished using off-the-shelf theorem provers for Horn
clause logics, such as Datalog or Prolog.

For a target language program p = (e, C) and execution trace
τ = κ0 . . . κn we define p ⇓ τ if and only if κ0 = (e, ∅, 0, ∅, C)
and for all i ∈ 1..n we have κi−1 → κi.

To establish correctness of program rewriting, we need to define
a correspondence relation :≈. Source language execution traces
and target language execution traces correspond if they represent
the same expression evaluated to the same point. We make special
cases for when the source execution is about to perform a func-
tion application that the target execution will track or log via a
callEvent(f , v) or emit(f , v) command. In these cases, the tar-
get execution may be ahead by one or two steps, allowing time for
addition of information to the log.

Definition 12. Given the source language execution trace τ =
κ0 . . . κm and the target language execution trace τ ′ = κ′0 . . . κ

′
n,

where κi = (ei, ti, Ci) and κ′i = (e′i, Xi, t
′
i,Li, C′i), τ :≈ τ ′ iff

e0 = e′0 and either

1. em = e′n (taking = to mean syntactic equivalence); or

2. em = e′n−1 and e′n = callEvent(f , v); e′ for some expres-
sions f , v, and e′; or

3. em = e′n−2 and e′n = emit(f , v); e′ for some expressions f ,
v, and e′.

Finally, we need to define toFOL(L) for audit logs L produced
by an instrumented program. Since our audit logs are just sets of
formulas of the form LoggedCall(t, f , v), we define toFOL(L) =
L.

4.4 Program Rewriting Algorithm
Our program rewriting algorithm RΛcall takes a Λcall program

p = (e, C), a logging specification LS ∈ Calls defined as LS =
spec(XGuidelines , {LoggedCall}), and produces a Λlog program
p′ = (e′, C′) such that e and e′ are identical, and C′ is identi-
cal to C except for the addition of callEvent(h, v) and emit(h, v)

commands. The algorithm is straightforward: we modify the code-
base to add callEvent(h, v) to the definition of any function h ∈
Triggers(LS) ∪ {Logevent(LS)} and add emit(f , v) to the defi-
nition of function f = Logevent(LS).

Definition 13. For Λcall program p = (e, C) and logging speci-
fications LS ∈ Calls, define:

RΛcall((e, C),LS) = (e, C′)

where C′(f) =

λx.callEvent(f , x); emit(f , x); ef if f = Logevent(LS)

and C(f) = λx.ef

λx.callEvent(f , x); ef if f ∈ Triggers(LS)

and C(f) = λx.ef

C(f) otherwise

This algorithm obeys the required properties, i.e. it is both se-
mantics preserving and sound and complete for a given logging
specification.

THEOREM 3. Program rewriting algorithm RΛcall is seman-
tics preserving (Definition 5).

THEOREM 4 (SOUNDNESS AND COMPLETENESS). Program
rewriting algorithm RΛcall is sound and complete (Definitions 6
and 7).

5. RELATED WORK
Previous work by DeYoung et al. has studied audit policy speci-

fication for medical (HIPAA) and business (GLBA) processes [18,
19, 17]. This work illustrates the effectiveness and generality of a
temporal logic foundation for audit policy specification, which is
well-founded in a general theory of privacy [16]. Their auditing
system has also been implemented in a tool similar to an interac-
tive theorem prover [24]. Their specification language inspired our
approach to logging specification semantics. However, this previ-
ous work assumes that audit logs are given, and does not consider
the correctness of logs. Some work does consider trustworthiness
of logs [5], but only in terms of tampering (malleability). In con-
trast, our work provides formal foundations for the correctness of
audit logs, and considers algorithms to automatically instrument
programs to generate correct logs.

Other work applies formal methods (including predicate logics
[14, 8], process calculi and game theory [26]) to model, specify,
and enforce auditing and accountability requirements in distributed
systems. In that work, audit logs serve as evidence of resource ac-
cess rights, an idea also explored in Aura [38] and the APPLE sys-
tem [21]. In Aura, audit logs record machine-checkable proofs of
compliance in the Aura policy language. APPLE proposes a frame-
work based on trust management and audit logic with log genera-
tion functionality for a limited set of operations, in order to check
user compliance.

In contrast, we provide a formal foundation to support a broad
class of logging specifications and relevant correctness conditions.
In this respect our proposed system is closely related to PQL [32],
which supports program rewriting with instrumentation to answer
queries about program execution. From a technical perspective, our
approach is also related to trace matching in AspectJ [1], especially
in the use of logic to specify trace patterns. However, the concern in
that work is aspect pointcut specification, not logging correctness,

and their method call patterns are restricted to be regular expres-
sions with no conditions on arguments, whereas the latter is needed
for the specifications in Calls.

Logging specifications are related to safety properties [37] and
are enforceable by security automata, as we have shown. Hence
IRM rewriting techniques could be used to implement them [20].
However, the theory of safety properties does not address correct-
ness of audit logs as we do, and our approach can be viewed as a
logging-specific IRM strategy.

Guts et al. [25] develop a static technique to guarantee that pro-
grams are properly instrumented to generate audit logs with suf-
ficient evidence for auditing purposes. As in our research, this
is accomplished by first defining a formal semantics of auditing.
However, they are interested in evidence-based auditing for spe-
cific distributed protocols.

Other recent work [22] has proposed log filters as a required im-
provement to the current logging practices in the industry due to
costly resource consumption and the loss of necessary log infor-
mation among the collected redundant data. This work is purely
empirical, not foundational, but provides practical evidence of the
relevance of our efforts since logging filters could be defined as
logging specifications.

Audit logs can be considered a form of provenance: the history
of computation and data. Several recent works have considered for-
mal semantics of provenance [7, 6]. Cheney [10] presents a frame-
work for provenance, built on a notion of system traces. Recently,
W3C has proposed a data model for provenance, called PROV [3],
which enjoys a formal description of its specified constraints and
inferences in first-order logic, [11], however the given semantics
does not cover the relationship between the provenance record and
the actual system behavior.

6. CONCLUSION
In this paper we have addressed the problem of audit log cor-

rectness. In particular, we have considered how to separate logging
specifications from implementations, and how to formally estab-
lish that an implementation satisfies a specification. This separa-
tion allows security administrators to clearly define logging goals
independently from programs, and inspires program rewriting tools
that support correct, automatic instrumentation of logging specifi-
cations in legacy code.

By leveraging the theory of information algebra, we have defined
a semantics of logging specifications as functions from program
traces to information. By interpreting audit logs as information, we
are then able to establish correctness conditions for audit logs via
an information containment relation between log information and
logging specification semantics. These conditions allow proof of
correctness of program rewriting algorithms that automatically in-
strument general classes of logging specifications. To demonstrate,
we define a prototype rewriting algorithm for a functional calcu-
lus that instruments a class of logging specifications defined in first
order logic, and prove the algorithm correct.

References
[1] Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L.J.,

Kuzins, S., Lhoták, O., de Moor, O., Sereni, D., Sittampalam,
G., Tibble, J.: Adding trace matching with free variables to
AspectJ. In: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2005, October 16-20,
2005, San Diego, CA, USA. pp. 345–364 (2005)

[2] Bauer, L., Ligatti, J., Walker, D.: More enforceable security
policies. Tech. Rep. TR-649-02, Princeton University (2002)

[3] Belhajjame, K., B’Far, R., Cheney, J., Coppens, S., Cress-
well, S., Gil, Y., Groth, P., Klyne, G., Lebo, T., McCusker, J.,
Miles, S., Myers, J., Sahoo, S., Tilmes, C.: PROV-DM: The
PROV data model. http://www.w3.org/TR/2013/
REC-prov-dm-20130430 (2013), accessed: 2015-02-07

[4] Biswas, D., Niemi, V.: Transforming privacy policies to au-
diting specifications. In: 13th IEEE International Symposium
on High-Assurance Systems Engineering, HASE 2011, Boca
Raton, FL, USA, November 10-12, 2011. pp. 368–375 (2011)

[5] Böck, B., Huemer, D., Tjoa, A.M.: Towards more trustable
log files for digital forensics by means of “trusted comput-
ing”. In: Proceedings of the 24th IEEE International Confer-
ence on Advanced Information Networking and Applications.
pp. 1020–1027. AINA ’10, IEEE Computer Society, Wash-
ington, DC, USA (2010)

[6] Buneman, P., Chapman, A., Cheney, J.: Provenance manage-
ment in curated databases. In: Proceedings of the ACM SIG-
MOD International Conference on Management of Data. pp.
539 – 550 (2006)

[7] Buneman, P., Khanna, S., Tan, W.C.: Why and where: A char-
acterization of data provenance. Lecture Notes in Mathemat-
ics - Springer Verlag pp. 316–330 (2000)

[8] Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den
Hartog, J.I., Lenzini, G.: Audit-based compliance control. In-
ternational Journal of Information Security 6(2-3), 133–151
(2007)

[9] Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to
know about Datalog (And never dared to ask). IEEE Trans-
actions on Knowledge and Data Engineering 1(1), 146–166
(1989)

[10] Cheney, J.: A formal framework for provenance security. In:
Proceedings of the 24th IEEE Computer Security Foundations
Symposium. pp. 281–293 (2011)

[11] Cheney, J.: Semantics of the PROV data
model. http://www.w3.org/TR/2013/
NOTE-prov-sem-20130430 (2013), accessed: 2015-02-
07

[12] Chuvakin, A.: Beautiful log handling. In: Oram, A., Viega,
J. (eds.) Beautiful security: Leading security experts explain
how they think. O’Reilly Media Inc. (2009)

[13] Cook, D., Hartnett, J., Manderson, K., Scanlan, J.: Catch-
ing spam before it arrives: Domain specific dynamic black-
lists. In: Proceedings of the Fourth Australasian Symposium
on Grid Computing and e-Research (AusGrid 2006) and the
Fourth Australasian Information Security Workshop. pp. 193–
202. Australian Computer Society, Inc. (2006)

[14] Corin, R., Etalle, S., den Hartog, J.I., Lenzini, G., Staicu, I.:
A logic for auditing accountability in decentralized systems.
In: Formal Aspects in Security and Trust. pp. 187–201 (2004)

[15] CPMC Press Release: Audit finds employee access
to patient files without apparent business or treatment
purpose. http://www.cpmc.org/about/press/
News2015/phi.html (2015), accessed: 2015-01-30

[16] Datta, A., Blocki, J., Christin, N., DeYoung, H., Garg, D., Jia,
L., Kaynar, D.K., Sinha, A.: Understanding and protecting
privacy: Formal semantics and principled audit mechanisms.
In: Proceedings of the 7th International Conference on Infor-
mation Systems Security. pp. 1–27 (2011)

[17] DeYoung, H., Garg, D., Jia, L., Kaynar, D., Datta, A.: Pri-
vacy policy specification and audit in a fixed-point logic: How
to enforce HIPAA, GLBA, and all that. Tech. Rep. CMU-
CyLab-10-008, Carnegie Mellon University (April 2010)

[18] DeYoung, H., Garg, D., Jia, L., Kaynar, D.K., Datta, A.: Ex-
periences in the logical specification of the HIPAA and GLBA
privacy laws. In: Proceedings of the 2010 ACM Workshop on
Privacy in the Electronic Society. pp. 73–82 (2010)

[19] DeYoung, H., Garg, D., Kaynar, D., Datta, A.: Logi-
cal specification of the GLBA and HIPAA privacy laws.
Tech. Rep. CMU-CyLab-10-007, Carnegie Mellon University
(April 2010)

[20] Erlingsson, Ú.: The inlined reference monitor approach to se-
curity policy enforcement. Ph.D. thesis, Cornell University
(2003)

[21] Etalle, S., Winsborough, W.H.: A posteriori compliance con-
trol. In: Proceedings of the 12th ACM Symposium on Access
Control Models and Technologies. pp. 11–20 (2007)

[22] Fu, Q., Zhu, J., Hu, W., Lou, J., Ding, R., Lin, Q., Zhang,
D., Xie, T.: Where do developers log? An empirical study
on logging practices in industry. In: Proceedings of the 36th
International Conference on Software Engineering. pp. 24–33
(2014)

[23] Ganapathy, V., Jaeger, T., Skalka, C., Tan, G.: Assurance
for defense in depth via retrofitting. In: Layered Assurance
Workshop (2014)

[24] Garg, D., Jia, L., Datta, A.: Policy auditing over incomplete
logs: Theory, implementation and applications. In: Proceed-
ings of the 18th ACM Conference on Computer and Commu-
nications Security. pp. 151–162 (2011)

[25] Guts, N., Fournet, C., Nardelli, F.Z.: Reliable evidence: Au-
ditability by typing. In: Proceedings of the 14th European
Conference on Research in Computer Security. pp. 168–183.
ESORICS’09, Springer-Verlag, Berlin, Heidelberg (2009)

[26] Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: Towards a
theory of accountability and audit. In: Proceedings of the 14th
European Symposium on Research in Computer Security. pp.
152–167 (2009)

[27] Kemmerer, R.A., Vigna, G.: Intrusion detection: A brief his-
tory and overview. Computer 35(4), 27–30 (2002)

[28] King, J.T., Smith, B., Williams, L.: Modifying without a
trace: General audit guidelines are inadequate for open-
source electronic health record audit mechanisms. In: Pro-
ceedings of the 2nd ACM SIGHIT International Health Infor-
matics Symposium. pp. 305–314. ACM (2012)

[29] Kohlas, J.: Information Algebras: Generic Structures For In-
ference. Discrete mathematics and theoretical computer sci-
ence, Springer (2003)

[30] Kohlas, J., Schmid, J.: An algebraic theory of informa-
tion: An introduction and survey. Information 5(2), 219–254
(2014)

[31] Lampson, B.W.: Computer security in the real world. IEEE
Computer 37(6), 37–46 (2004)

[32] Martin, M., Livshits, B., Lam, M.S.: Finding application
errors and security flaws using PQL: A program query lan-
guage. In: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications. pp. 365–383. ACM (2005)

[33] Matthews, P., Gaebel, H.: Break the glass. In:
HIE Topic Series. Healthcare Information and Man-
agement Systems Society (2009), http://www.
himss.org/files/himssorg/content/files/
090909breaktheglass.pdf

[34] OpenMRS Wiki: Usage statistics module. https:
//wiki.openmrs.org/display/docs/Usage+
Statistics+Module (2010), accessed: 2015-06-15

[35] Povey, D.: Optimistic security: A new access control
paradigm. In: Proceedings of the 1999 Workshop on New
Security Paradigms. pp. 40–45 (1999)

[36] Rizvi, S.Z., Fong, P.W.L., Crampton, J., Sellwood, J.:
Relationship-based access control for an open-source medi-
cal records system. In: ACM Symposium on Access Control
Models and Technologies (2015)

[37] Schneider, F.B.: Enforceable security policies. ACM Transac-
tions on Information and System Security 3(1), 30–50 (2000)

[38] Vaughan, J.A., Jia, L., Mazurak, K., Zdancewic, S.:
Evidence-based audit. In: Proceedings of the 21st IEEE Com-
puter Security Foundations Symposium. pp. 177–191 (2008)

[39] Weitzner, D.J.: Beyond secrecy: New privacy protection
strategies for open information spaces. IEEE Internet Com-
puting 11(5), 94–96 (2007)

[40] Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum,
J., Hendler, J.A., Sussman, G.J.: Information accountability.
Communications of the ACM 51(6), 82–87 (2008)

[41] Zhang, W., Chen, Y., Cybulski, T., Fabbri, D., Gunter, C.A.,
Lawlor, P., Liebovitz, D.M., Malin, B.: Decide now or decide
later? Quantifying the tradeoff between prospective and retro-
spective access decisions. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Se-
curity. pp. 1182–1192 (2014)

[42] Zheng, A.X., Jordan, M.I., Liblit, B., Naik, M., Aiken, A.:
Statistical debugging: Simultaneous identification of multi-
ple bugs. In: Proceedings of the 23rd International Con-
ference on Machine Learning. pp. 1105–1112. ICML ’06,
ACM, New York, NY, USA (2006), http://doi.acm.
org/10.1145/1143844.1143983

