
LSFA 2020

Correct Audit Logging in Concurrent Systems

Sepehr Amir-Mohammadiana,1 Chadi Karia,2

a School of Engineering and Computer Science, University of the Pacific, Stockton, California 95211

Abstract

Audit logging provides post-facto analysis of runtime behavior for different purposes, including error detection, amelioration of
system operations, and the establishment of security in depth. This necessitates some level of assurance on the quality of the
generated audit logs, i.e., how well the audit log represents the events transpired during the execution. Information-algebraic
techniques have been proposed to formally specify this relation and provide a framework to study correct audit log generation in a
provable fashion. However, previous work fall short on how to guarantee this property of audit logging in concurrent environments.
In this paper, we study an implementation model in a concurrent environment. We propose an algorithm that instruments a
concurrent system according to a formal specification of audit logging requirements, so that any instrumented concurrent system
guarantees correct audit log generation. As an application, we consider systems with microservices architecture, where logging
an event by a microservice is conditioned on the occurrence of a collection of events that take place in other microservices of the
system.

Keywords: Audit logging, Concurrent systems, Programming languages, Security

1 Introduction

Reliable audit logging is essential to provide secure computation through the after-the-fact analysis of the
audit log. Audit logging is used along with preventive security mechanisms to enable in-depth enforcement of
security. In-depth enforcement of security refers to multiple layers of pre-execution, runtime, and post-execution
techniques to ensure the legitimacy of the computation. Examples abound, e.g., a medical records system that
enforces preventive measures including user authentication, static/dynamic information flow analysis to prevent
leakage or corruption of data [1], and access authorization, e.g., to deny illegitimate access of certain users to
certain medical data. Moreover, the system engages in the collection and a posteriori analysis of audit logs
for different purposes, including the satisfaction of accountability goals, e.g., established by Health Insurance
Portability and Accountability Act (HIPAA) [2,3], reinforcement of access control [4,5], etc.

Using audit logging along with preventive mechanisms has two major applications: 1) Post-execution
analysis of audit logs provides a platform to detect security violations based on the logged evidence [6,7].
This class of logging policies rely on the notions of user accountability and deterrence. 2) Audit logging is used
to detect existing vulnerabilities in the preventive security mechanisms and ameliorate those mechanisms [8,9].

In both of the aforementioned applications, effectiveness of in-depth security relies on the correctness and
efficiency of the generated audit log and its after-the-fact analysis. Audit log correctness and efficiency reflect
on some challenges in the generation of audit logs. Correct audit logging must record factual information
about the runtime behavior, which may be ensured by the verification of auditing policies and their runtime
enforcement mechanisms. Moreover, a correct audit log must include sufficient information according to what
the auditing policy specifies. In addition, efficiency of audit logging must be emphasized in in-depth security in
order to improve system performance regarding the collection and analysis of audit logs. Efficient audit logging
entails to only record necessary information about the computation, rather than naively collecting all events

1 Email: samirmohammadian@pacific.edu
2 Email: celkari@pacific.edu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

samirmohammadian@pacific.edu
mailto:celkari@pacific.edu

Amir-Mohammadian & Kari

in the log. These issues have been challenging in the wild, for instance resulting in failure to safeguard against
data breaches, and are considered as one of the top ten most critical security risks by Open Web Application
Security Project [10].

To establish a formal foundation for audit logging, a general semantics of audit logs has been defined [7,11]
using the theory of information algebra [12]. This line of work helps to study whether the mechanism of
enforcing an audit logging policy is correct and efficient on the basis of the proposed information-algebraic
framework. Both program execution traces and audit logs are interpreted as information elements in this
framework. In essence, the relation between the information in execution traces and the information in audit
logs is formulated according to the established notion of information containment. An audit log is defined
correct if it satisfies this relation. This formulation facilitates the separation of the specification of auditing
requirements from programs, which is of great value in practice. This way, rather than manual inlining of audit
logging in the code, algorithms can be proposed that automatically instrument the code with audit logging
capabilities. The semantic framework enables algorithms for implementing general classes of specifications for
auditing and establish conditions that guarantee the enforcement of those specifications by such algorithms.

The aforementioned line of work relies on the proposed semantic framework for audit log generation whose
implementation model is constrained to linear process executions. This limitation, in practice, restricts the
application of the framework to systems where a single thread of execution is involved in the generation
of audit logs. For instance, in the case study of a medical records system [11], audit logging capability is
considered as an extension to the web server program, and all preconditions for logging depend on the events
that transpire in the same program execution thread. As an example consider breaking the glass event [13].
Breaking the glass is used in critical situations to bypass access control. By breaking the glass, system users
increase their authority in the system in order to gain access to certain data, but simultaneously admit to
be accountable for their actions. Breaking the glass event is a precondition to log accesses to particular
patient information. Instrumentation of medical records web server guarantees correct audit logging as long
as such events occur in the execution trace of the single-threaded web server. This eliminates the possibility
of distributing authentication and authorization tasks to other concurrent components of the system. Such
restriction encourages us to study the semantics of audit logging in concurrent environments that underlies
correct instrumentation of multithreaded and multiprocess applications for auditing purposes. Indeed, real-
world examples of inadequate logging and monitoring in concurrent and distributed systems, e.g., a recent
security incident in a retailer’s network of POS systems [14], demonstrates how crucial it is to ensure the
correctness of audit logging mechanisms.

The proposed semantic framework needs to provide a mechanism to specify auditing requirements based
on concurrent execution traces. Our framework needs to be general enough to encompass different audit log
generation and representation approaches as its instances. The generality of information theoretic models have
already been shown in this realm [11]. We demonstrate that such a model can be used for concurrent systems.
We use the model to interpret audit logs, specify audit logging requirements and define correct enforcement of
such requirements in concurrent systems. Similar to the previous work on linear process executions, correctness
of log in concurrent environments is conditioned on the specifications of auditing requirements through the
comparison between the information contained in the log and the information advertised by those specifications.

We instantiate our general model with a sufficiently expressive language in order to specify and enforce
auditing requirements in concurrent environments. Horn clause logic is a proper language for this purpose
due to straightforward modeling of execution traces as sets of facts, sufficient expressivity to specify auditing
requirements and available logic programming implementations, e.g., [15,16].

A formal language model is used to specify and establish correct enforcement of audit logging policies in
concurrent systems according to the developed framework. We use a variant of π-calculus [17] with unlabeled
reduction semantics for this purpose. This formalism provides a model for developing tools with correctness
guarantees. This model enjoys the following features.

• Concurrency: In order to specify multithreaded programs and multiprocessor systems, the language model
supports concurrent process executions with interprocess communication (IPC) through message passing.

• Generality: While different process calculi are potential choices to describe our implementation model, we
use a variant of π-calculus due to its sufficiently concise and high level syntax and semantics to describe
interactions among processes. This facilitates formulation of a wide range of concurrent systems.

• Timing: We need to be able to specify the ordering of interesting events for the sake of specifying auditing
requirements. For example, in break the glass policies access to particular patient information is logged as
long as the glass is already broken. In order to implement such specifications, we need to apply a timing
mechanism that is shared among all processes of the system. Each step of concurrent execution of processes
updates this universal time.

• Named functions: To specify auditing requirements, a fundamental unit of secure operations is required.
Functions can be considered as abstractions of these fundamental units in different languages and systems.

2

Amir-Mohammadian & Kari

Our language model supports named functions, in terms of sub-agents of each agent.

Using the formalism with aforementioned features enables us to model concurrent environments that guar-
antee the correct generation of audit logs according to the developed semantic framework. In this paper, we
propose an instrumentation algorithm that receives a concurrent system as input and modifies the system ac-
cording to a precise specification of audit logging requirements. We show that this algorithm is correct (based
on the semantic framework), and hence the instrumented concurrent system generates correct audit logs. As
implied earlier, enforcement of audit logging policies through code instrumentation separates policy from code,
provides a foundation to study the effectiveness of enforcement mechanism using formal methods, and can be
applied automatically to legacy code to enhance system accountability.

Since our model is based on process calculi, IPC is handled by message-passing. Modeling alternative IPC
approaches for correct audit logging, e.g., shared memory and/or files, is considered as potential future work.

Case studies that benefit from the result of this work include deployment of correct logging capabilities
in multiprocess and multithreaded client-server and peer-to-peer applications, microservices, etc. While this
paper provides a prototype instrumentation algorithm in abstract settings, as a future work, we aim to deploy
our existing instrumentation algorithm in Spring Boot [18], a Java microservices framework, that facilitates
code instrumentation through aspect-oriented programming [19].

1.1 Paper Outline

The rest of the paper is organized as follows. In Section 1.2, we discuss an illustrative example for audit logging
in concurrent systems and in Section 1.3 we discuss the threat model. Section 2 reviews the information-
algebraic semantics of audit logging and instantiation of the model with first-order predicate logic. Section 3
discusses the implementation model in detail. In particular, Section 3.1 introduces the syntax and semantics
of the source system, a variant of π-calculus. In Section 3.2, we study a class of logging specifications that
assert temporal relations among function invocations, potentially in different concurrent components of a
system. Section 3.3 studies the syntax and semantics of the target system. In Section 3.4, we propose our
instrumentation algorithm, along with the properties of interest that the algorithm satisfies. The proofs of
these properties are given in our accompanying Technical Report [20]. In Section 4, related work is discussed.
Finally, Section 5 concludes the paper and specifies future work.

1.2 An Example: Microservices-based Medical Records Systems

In this section, an oversimplified example is given that illustrates the application of audit logging in concurrent
environments. We will revisit this example later in the paper (through Examples 3.1 and 3.2) to explain sample
instantiations of our formal framework.

Many applications have been shifting their architecture from a traditional monolithic structure toward
service-oriented architecture (SOA) in order to boost maintainability, continuous deployment and testing,
adaptation to new technologies, system security, fault tolerance, etc. One popular deployment approach to
SOA is where an application is decomposed to a set of highly collaborative processes, called microservices. A
microservice must be minimal, independent, and fine-grained. Minimality constrains a microservice to access
and manipulate certain data types within an application, ideally a single database per each service. Microservice
instances run independently in their own containers, virtual machines, or hosts. To accomplish its own goals,
a microservice communicates with other microservices of the application through message passing, or remote
procedure calls (RPCs). Jolie [21] is the programming language for developing applications with microservices
architecture. Its formal semantics [22,23] is defined as a process calculus, inspired by π-calculus.

The need to better streamline healthcare services is pushing medical record systems toward microservices
[24]. In fact, a new study shows that microservices-based healthcare is anticipated to experience fivefold
increase in market value within the next few years [25].

In what follows we describe a simple example of microservices-based medical records system, where audit
logging for certain events is necessary, as dictated by the accountability requirements. Figure 1 depicts a
medical records system with microservices architecture that includes Authorization and Patient services (among
others). Application front-end includes API gateway that multiplexes user requests (from different clients, e.g.,
web, mobile applications, etc.) to certain microservices. Patient microservice manages the information about
patients, e.g., their medical history. Authorization microservice handles different operations to authorize access
to system data, including e.g., breaking the glass.

As mentioned earlier, by breaking the glass, the user agrees to comply with accountability regulations. The
common solution to follow accountability regulations is to generate trail of audit logs at runtime. One such
audit logging requirement may be as follows: “Any attempt by a healthcare provider to read patient medical
data must be stored in the log, if that provider has already broken the glass.”

This example demonstrates the core ideas that we are pursuing in this paper:

3

Amir-Mohammadian & Kari

Authorization

Service

Authorization

DB

Patient

Service

Application

Front End

Patient

DB

Fig. 1. Authorization and Patient microservices of a medical records system.

• A concurrent system is employed, where each component runs independently and in collaboration with other
components, e.g., a medical records system with different microservices including the ones described above.

• Audit logging requirements necessitate logging certain events in a concurrent component, provided that a set
of other events have previously occurred in potentially other concurrent components, e.g., logging the event
of reading medical history in Patient microservice if the glass is already broken in Authorization microservice.

• We investigate an algorithmic approach to establish correct audit logging for concurrent environments ac-
cording to the already-established audit logging requirements. We expect correctness of audit logging in
our medical records system example, for instance, to imply only logging the reading attempts by the user
who has broken the glass. This avoids missing any logging event, as well as logging unnecessary events. We
accomplish this by instrumenting Authorization and Patient microservices, and in particular the operations
of interest, i.e., breaking the glass and reading patient medical history.

1.3 Threat Model

We assume that the concurrent system subjected to instrumentation is not supporting audit logging in the first
place, or is suffering from either insufficient or overzealous audit log generation. However, we assume that the
concurrent system that is deployed according to our implementation model, passes both static and dynamic
checks, e.g., syntactic checks, type checks, compilation, interpretation, etc. We trust the compiler/interpreter,
and the runtime environment in which that system is being executed. Moreover, we trust the implementation of
our instrumentation algorithm, and its compilation and/or interpretation, along with the runtime environment
in which the instrumentation algorithm is executed. We also trust the integrity of logging specifications that
assert audit logging requirements. Finally, we trust the compilation/interpretation process for the instrumented
concurrent system that is deployed based on our implementation model, as well as the system’s runtime
environment. Security of the messages transmitted between concurrent components and the generated audit
logs is considered to be out-of-scope.

These assumptions help us to purposefully focus on the essence of logging, i.e., whether logs are generated
correctly in the first place and independent of external concerns including reliability of the underlying execution
and communication system, latency, etc. which are explored in related work (Section 4).

2 Semantics of Audit Logging

In order to provide a standalone formal presentation, in this section we review the information-algebraic
semantics of audit logging and the instantiation of the semantic framework with first-order logic, which is
originally proposed by Amir-Mohammadian et al. [11]. We have applied minor modifications to the model to
better suit concurrency and nondeterministic runtime behavior, inherent to concurrent systems.

2.1 Information-Algebraic Semantic Framework

In order to specify how audit logs are generated at runtime, we need to abstract system states and their
evolution through the computation. A system configuration κ abstracts the state of the system at a given
point during the execution. Let K denote the set of system configurations. We posit a binary reduction
relation among configurations, i.e., (−→) ⊆ K × K which denotes the computational steps, and is used in
the standard infix form. 3 A system trace τ is a potentially infinite sequence of system configurations, i.e.,

3 A notational convention throughout the paper is that infix operators and relations are wrapped with parentheses when their
signature are specified.

4

Amir-Mohammadian & Kari

τ = κ0κ1 · · · , where κi is the ith configuration in sequence, and κi −→ κi+1. We denote the set of all traces
by T , and define prefix (τ) as the set of all prefixes of τ .

Information algebra is used to define the notion of correctness for audit logs. In Section 2.2, we instan-
tiate this abstract algebraic structure to model a specific class of audit logging requirements. We define an
information algebra in the following.

Definition 2.1 (Information algebra) An information algebra (Φ,Ψ) is a two-sorted algebra consisting of
an Abelian semigroup of information elements, Φ, as well as a lattice of querying domains, Ψ. Two fundamental
operators are presumed in this algebra: a combination operator, (⊗) : Φ × Φ → Φ, and a focusing operator,
(⇒) : Φ × Ψ → Φ. An Information algebra (Φ,Ψ) satisfies a set of properties, in connection to combination
and focusing operators. 4 We let X,Y, Z, · · · to range over elements of Φ, and E range over Ψ.

X,Y ∈ Φ are information elements that can be combined to make a more inclusive information element
X ⊗ Y . E ∈ Ψ is a querying domain with a certain level of granularity that is used by the focusing operator
to extract information from an information element X, denoted by X⇒E . For example, relational algebra
is an instance of information algebra, in which relations instantiate information elements, sets of attributes
instantiate querying domains, natural join of two relations defines the combination operator, and projection of
a relation on a set of attributes defines the focusing operator [12].

Combination of information elements induces a partial order relation (4) ⊆ Φ × Φ among information
elements, defined as follows: X 4 Y iff X⊗Y = Y . Intuitively, X 4 Y means that Y contains the information
element X.

As part of the semantics of audit logging, we treat execution traces as information elements, i.e., the
information content of the execution trace. To this end, we posit b·c : T → Φ as a mapping in which,
intuitively, bτc refers to the information content of the trace τ . We also impose the condition that b·c be
injective and monotonically increasing, i.e., if τ ′ ∈ prefix (τ) then bτ ′c 4 bτc. This ensure that as the execution
trace grows in length, it contains more information.

In the following definition, we define audit logging requirements in an abstract form. We call this abstraction
a logging specification. This definition is abstract enough to encompass different execution models, as well as
different representations of information. In Sections 2.2 and 3.2, we instantiate this definition with a more
concrete structure that guides us on how to implement audit logging requirements.

Definition 2.2 (Logging specifications) Logging specification LS is defined as a mapping from system
traces to information elements, i.e., LS : T → Φ. Intuitively, LS (τ) declares what information must be
logged, if the system follows the execution trace τ .

Note that even though b·c and LS have the same signature, i.e., maps from traces to information elements,
they are conceptually different. bτc is the whole information contained in τ , whereas LS (τ) is the information
that is supposed to be recorded in the log, if the system follows the execution trace τ .

We denote an audit log with L which represents a set of data, gathered at runtime. Let L denote the set
of audit logs. In order to judge about the correctness of an audit log, the information content of the audit log
needs to be studied in comparison to the information content of the trace that generates that audit log. To
this end, we define a mapping that returns the information content of an audit log. We abuse the notation
and consider b·c : L → Φ as such mapping. Therefore, bLc refers to the information content of the audit log
L. We assume that b·c on audit logs is injective and monotonically increasing, i.e., if L ⊆ L′ then bLc 4 bL′c.
Therefore, the more inclusive the audit log is, it contains more information.

The notion of correct audit logging can be defined based on an execution trace and a logging specification. To
this end, the information content of the audit log is compared to the information that the logging specification
dictates to be recorded in the log, given the execution trace. The following definition captures this relation.

Definition 2.3 (Correctness of audit logs) Audit log L is correct wrt a logging specification LS and a
system trace τ iff both bLc 4 LS (τ) and LS (τ) 4 bLc hold. The former refers to the necessity of the information
in the audit log, and the latter refers to the sufficiency of those information.

A system that generates audit logs at runtime includes the stored logs as part of its configuration. Let the
mapping logof : K → L denote the residual log of a given system configuration, i.e., logof (κ) is the set of all
recorded audit logs in configuration κ. It is natural to assume that the residual log within configurations grows
larger as the execution proceeds. The residual log of a trace is then defined using logof .

Definition 2.4 (Residual log of a system trace) The residual log of a finite system trace τ is L, denoted
by τ L, iff τ = κ0κ1 · · ·κn and logof (κn) = L.

4 We avoid discussing these properties in detail here for the sake of brevity. Readers are referred to [12] for the complete
formulation.

5

Amir-Mohammadian & Kari

Note that if τ L, then L is not necessarily correct wrt a given LS and a trace τ . If the residual log of
a trace is correct throughout the execution, then that trace is called ideally-instrumented. System trace τ is
ideally instrumented for a logging specification LS iff for any trace τ ′ and audit log L, if τ ′ ∈ prefix (τ) and
τ ′ L then L is correct wrt τ ′ and LS . Indeed audit logging is an enforceable security property on a trace
of execution [11]. Given a logging specification, ideally-instrumented traces induce a safety property [26], and
hence implementable by inlined reference monitors [27], and edit automata [28].

Let s be a concurrent system with an operational semantics. s ⇓ τ iff s can produce trace τ ′, either
deterministically or non-deterministically, and τ ∈ prefix (τ ′). We abuse the notation and use κ ⇓ τ to denote
the same concept for configuration κ. We follow program instrumentation techniques, in order to enforce
a logging specification on a system. An instrumentation algorithm receives the concurrent system as input
along with the logging specification, and instruments the system with audit logging capabilities so that the
instrumented system generates the required “appropriate” log. An instrumentation algorithm is a partial
function I : (s,LS) 7→ s′ that instruments s according to LS aiming to generate audit logs appropriate for LS .
We call s the source system, and the instrumented system, i.e., I(s,LS) = s′, the target system. Source and
target traces refer to the traces of the source and target systems, resp.

It is natural to expect that the instrumentation algorithm would not modify the semantics of the original
system drastically. The target system must behave roughly similar to the source system, except for the opera-
tions related to audit logging. We call this attribute of an instrumentation algorithm semantics preservation,
and define it in the following. This definition is abstract enough to encompass different source and target sys-
tems (with different runtime semantics), and instrumentation techniques. The abstraction relies on a binary
relation :≈, called correspondence relation, that relates the source and target traces. Based on different imple-
mentations of the source and target systems, and the instrumentation algorithm, the correspondence relation
can be defined accordingly.

Definition 2.5 (Semantics preservation by the instrumentation algorithm) Instrumentation algo-
rithm I is semantics preserving iff for all systems s and logging specifications LS, where I(s,LS) is defined, the
following conditions hold: 1) For any trace τ , if s ⇓ τ , then there exists some trace τ ′ such that I(s,LS) ⇓ τ ′,
and τ :≈ τ ′. 2) For any trace τ , if I(s,LS) ⇓ τ , then there exists some trace τ ′ such that s ⇓ τ ′, and τ ′ :≈ τ .

Another related property of the instrumentation algorithm is to ensure that it is deadlock-free, meaning
that instrumenting a system does not introduce new states being stuck. One approach to define an independent
notion of deadlock-freeness is to consider bisimilar source and target traces. Indeed, additional formal constructs
must be introduced to translate target traces to source traces for this purpose. Our definition of deadlock-
freeness, however, heavily relies on the notion of semantics preservation, and is not a required component in the
definition of instrumentation correctness (Definition 2.7). Let source system s generate trace τ , and I(s,LS)
generate trace τ ′ such that τ :≈ τ ′. Then, we call I(s,LS) being stuck if s can continue execution following τ
(at least for one extra step), while I(s,LS) cannot continue execution following τ ′.

Definition 2.6 (Deadlock-freeness of the instrumentation algorithm) Instrumentation algorithm I is
deadlock-free iff for any source system s, logging specification LS, traces τ and τ ′, and configuration κ, if s ⇓ τ ,
I(s,LS) ⇓ τ ′, τ :≈ τ ′, and s ⇓ τκ, then there exists some configuration κ′ such that I(s,LS) ⇓ τ ′κ′.

Besides these properties, another important feature of an instrumentation algorithm is the quality of audit
logs generated by the instrumented system. The information-algebraic semantic framework provides a platform
to define correct instrumentation algorithms for audit logging purposes. Let s be a target system, and τ be a
source trace. Simulated logs of τ by s is the set simlogs(s, τ) defined as simlogs(s, τ) = {L | ∃τ ′.s ⇓ τ ′ ∧ τ :≈
τ ′ ∧ τ ′ L}. Using this set, we can define correctness of instrumentation algorithms in a straightforward
manner. Intuitively, the instrumentation algorithm I is correct if the instrumented system generates audit logs
that are correct wrt the logging specification and the source trace. This must hold for any source system, any
logging specification, and any possible log generated by the instrumented system.

Definition 2.7 (Correctness of the instrumentation algorithm) Instrumentation algorithm I is cor-
rect iff for all source systems s, traces τ , and logging specifications LS, s ⇓ τ implies that for any
L ∈ simlogs(I(s, LS), τ), L is correct wrt LS and τ .

2.2 Instantiation of Logging Specification

In Definition 2.2, logging specification is defined abstractly as a mapping from system traces to information
elements. For a more concrete setting, this definition needs to be instantiated with appropriate structures in
a way that is useful in the deployment of audit logging. In essence, we need to instantiate information algebra
(Definition 2.1). We are interested in logical specification of audit logging requirements due to its easiness of
use, expressivity power, well-understood semantics, and off-the-self logic programming engines for subsets of
first-order logic (FOL), e.g., Horn clause logic. To this end, in this section, we instantiate information algebra
with FOL, which is expressive enough to specify computational events, and the temporal relation among them.

6

Amir-Mohammadian & Kari

Indeed, other variants of logic may also be considered for this purpose.
In order to instantiate information algebra, it is required to specify the contents of the set of information

elements Φ and the lattice of querying domains Ψ, along with the definitions of combination and focusing
operators. Definitions 2.8, 2.9, and 2.10 accomplish these instantiations.

Definition 2.8 instantiates an FOL-based set of information elements. An information element in our
instantiation is a closed set of FOL formulas, under a proof-theoretic deductive system.

Definition 2.8 (Set of closed sets of FOL formulas) Let ϕ range over FOL formulas, and Γ range over
sets of FOL formulas. Γ ` ϕ denotes a judgment derived by a sound and complete natural deduction proof
theory of FOL. We define closure operation Closure as Closure(Γ) = {ϕ | Γ ` ϕ}. Then, the set of closed set
of FOL formulas is defined as ΦFOL = {Γ | Γ = Closure(Γ)}.

Definition 2.9 instantiates the lattice of querying domains for the FOL-based information algebra. A query
domain is a subset of FOL, defined over certain predicate symbols.

Definition 2.9 (Lattice of FOL sublanguages) Let Preds be the set of all assumed predicate symbols along
with their arities. If S ⊆ Preds, then we denote the sublanguage FOL(S) as the set of well-formed FOL formulas
over predicate symbols in S. The set of all such sublanguages ΨFOL = {FOL(S) | S ⊆ Preds} is a lattice induced
by set containment relation.

Lastly, Definition 2.10 instantiates the combination and focusing operators for the FOL-based information
algebra. Combination is the closure of the union of two sets of formulas. Focusing is the closure of the
intersection of an information element and a query domain.

Definition 2.10 (Combination and focusing in (ΦFOL,ΨFOL)) Let (⊗) : ΦFOL × ΦFOL → ΦFOL be
defined as Γ ⊗ Γ′ = Closure(Γ ∪ Γ′), and (⇒) : ΦFOL × ΨFOL → ΦFOL be defined as Γ⇒FOL(S) =
Closure(Γ ∩ FOL(S)).

(ΦFOL,ΨFOL) is an information algebra, given the Definitions 2.8, 2.9, and 2.10. 5 In order to use
(ΦFOL,ΨFOL) as a framework for audit logging, we also need to instantiate the mapping b·c, introduced
in Section 2.1, to interpret both execution traces and audit logs as information elements.

Definition 2.11 (Mapping traces and audit logs to information elements in (ΦFOL,ΨFOL)) Let
toFOL(·) : (T ∪L)→ FOL(Preds) be an injective and monotonically increasing function. Then, we instantiate
b·c = Closure(toFOL(·)) in order to interpret both traces and logs as information elements in (ΦFOL,ΨFOL).

Now we can instantiate logging specification LS in the information algebra (ΦFOL,ΨFOL). To this end, a
set of audit logging rules and definitions are assumed to be given in FOL. Let Γ be this set. Moreover, a set of
predicate symbols are assumed that reflect on the predicates whose derivation need to be logged at runtime.
This set is denoted by S. A logging specification in this setting, receives a trace τ , combines the information
content of τ with closure of Γ, and then focuses on the predicates specified in S. Intuitively, given Γ and S,
a logging specification maps a trace τ to the set of all predicates whose symbols are in S, and are derivable
given rules in Γ and the events in τ .

Definition 2.12 (Logging Specification in (ΦFOL,ΨFOL)) Given a set of FOL formulas Γ and a subset of
predicate symbols S ⊆ Preds, a logging specification spec(Γ, S) : T → ΦFOL is defined as spec(Γ, S) = τ 7→
(bτc ⊗ Closure(Γ))

⇒FOL(S)
.

3 Implementation Model on Concurrent Systems

In this section, we propose an implementation model for correct audit logging in concurrent systems. To this
end, we use a variant of π-calculus to specify the concurrent system, and propose an instrumentation algorithm
that retrofits the system according to a given logging specification. We then specify and prove the properties
of interest, including the correctness of the instrumentation algorithm (Definition 2.7).

In Section 3.1, the syntax and semantics of the source system model is introduced. Section 3.2 proposes a
class of logging specifications that can specify temporal relations among computational events in concurrent
systems. Section 3.3 describes the syntax and semantics of the systems enhanced with audit logging capabilities.
Lastly, in Section 3.4, we discuss the instrumentation algorithm and the properties it satisfies.

3.1 Source System Model

We consider a core π-calculus as our source concurrent system model, denoted by Π. One major distinguish-
ing feature of π-calculus is modeling mobile processes using the same category of names for both links and

5 The reader is referred to [28] for the detailed proof, which relies on the properties of natural deduction system of FOL.

7

Amir-Mohammadian & Kari

transferable objects, along with scope extrusion. However, mobility is not used in our implementation model.
Therefore other seminal process calculi e.g., CSP [29] and CCS [30] can also be considered for this purpose.
We employ π-calculus due to its concise syntax and simple semantics that provides a clean and sufficiently
abstract specification of the required interactions among concurrent components of the system. The syntax
and semantics of the source system are defined in the following. It is based on the representation of the calculus
given in [31] which deviates from standard π-calculus by dropping silent prefixes, unguarded summations and
labeled reduction system, for the sake of simplicity and conciseness.

3.1.1 Syntax
Let N be the infinite denumerable set of names, and a, b, c, · · · and x, y, z, · · · range over them.

Prefixes Prefixes α are defined as α ::= a(x) | āx. Prefix a(x) is the input prefix, used to receive some
name with placeholder x on link a. Prefix āx is the output prefix, used to output name x on link a.

Agent names and processes Let A,B,C,D range over agent names, and A be the finite set of such
names. Processes P are defined as: P ::= 0 | α.P | (P |P) | (νx)P | C(y1, · · · , yn). 0 refers to the nil process.
α.P provides a sequence of operations in the process; first input/output prefix α takes place, and then P
executes. P |P provides parallelism in the system. (νx)P restricts (binds) name x within P . C(y1, · · · , yn)
refers to the invocation of an agent C with parameters y1, · · · , yn. Let P,Q,R range over processes.

Free and bound names Name restriction and input prefix bind names in a process. We denote the set
of free names in process P with fn(P). α-conversion for bound names is defined in the standard way.

Notational conventions A sequence of names is denoted by ã, i.e., a1, · · · , al for some l. A sequence of
name restrictions in a process (νa1)(νa2) · · · (νal)P is shown by (νa1a2 · · · al)P , or in short (νã)P . We skip
specifying the input name, if it is not free in the following process, i.e., a.P refers to a(x).P where x /∈ fn(P).
ā.P refers to outputting a value on link a that can be elided, e.g., due to lack of relevance in discussion.

Codebases Agent definitions are of the form A(x1, · · · , xn) , P . Let’s denote the set of agent and sub-
agent definitions with D. We assume the existence of a universal codebase CU consisting of agent definitions
of such form. This codebase is used to define top-level agents. A top-level agent corresponds to a concurrent
components of the system. Top-level agents are supposed to execute in parallel and occasionally communicate
with each other to accomplish their own tasks, and in aggregate the concurrent system. Let AU be the set of
top-level agent names such that AU ⊂ A. Throughout the paper we let m to be the size of AU , comprising of
A1, · · · , Am. CU is defined as a function from top-level agent names to their definitions, i.e., CU : AU → D.

Moreover, we assume the existence of a local codebase for each top-level agent, denoted by CL(A) for top-

level agent A. A local codebase consists of sub-agent (subprocess) definitions of the form BA(x1, · · · , xn) , P ,
where B is a sub-agent identifier, and A is a top-level agent identifier annotated in the definition of B. We
treat sub-agents as internal modules or functions of a top-level process. Annotation of top-level agent identifier
is used for this purpose, i.e., BA specifies that B is a module of top-level agent A. The set of sub-agent names
is denoted by AL, defined as A−AU . CL is defined as the function with signature CL : AU → AL → D.

Note that any process and subprocess definition can be recursive, e.g., if CU (A) = [A(x1, · · · , xn) , P] then
A(y1, · · · , yn) may appear in P . In the following, we use A and B to range over top-level agent identifiers and
sub-agent identifiers, resp. We use C to range over both top-level agents, A, and sub-agents, BA. In the rest
of the paper, we refer to top-level agents simply by “agents”. We assume that in any (sub)process definition

C(x1, · · · , xn) , P , we have fn(P) ⊆ {x1, · · · , xn}. This ensures that (sub)processes are closed.
Initial system Let AU = {A1, · · · , Am}. We posit a sequence of links c̃, that connect these agents in the

system. Then the initial concurrent system s is defined as

s ::=
〈
Ps, CU , CL

〉
, (1)

where Ps = (νc̃)(A1(x̃1) | A2(x̃2) | · · · | Am(x̃m)), assuming fn(Ps) = ∅, i.e.,
⋃
i x̃i ⊆ c̃.

Configurations We define system configurations as κ ::= P , where P is the process associated with the
whole system. The initial configuration is then defined as κ0 = Ps.

Substitutions A substitution is a function σ : N → N . The notation {y/x} is used to refer to a
substitution that maps x to y, and acts as the identity function otherwise. {ỹ/x̃} is used to denote multiple
explicit mappings in a substitution, where x̃ and ỹ are equal in length. Pσ refers to replacing free names in P
according to σ. This is associated with renaming of bound names in P to avoid name clashes.

3.1.2 Semantics
In the following, we define evaluation contexts and the structural congruence between processes. These defini-
tions facilitate the specification of unlabeled operational semantics in a concise manner.

Evaluation contexts A context is a process with a hole. An evaluation context E is a context whose hole
is not under input/output prefix, i.e., E ::= [] | (E|P) | (P |E) | (νa)E .

8

Amir-Mohammadian & Kari

STRUCT
CU B P ≡ P ′ CU B Q ≡ Q′ CU , CL B P −→ Q

CU , CL B P ′ −→ Q′

CONTEXT
CU , CL B P −→ Q

CU , CL B E[P] −→ E[Q]

CALL
CL(A)(B) = [BA(x̃) , P]

CU , CL B BA(ỹ) −→ P{ỹ/x̃}

COMM
CU , CL B a(x).P | āb.Q −→ P{b/x} | Q

Fig. 2. Unlabeled reduction semantics of Π.

Structural congruence Two processes P and Q are structurally congruent under the universal codebase
CU , denoted by CU B P ≡ Q according to the following rules.

(i) Structural congruence is an equivalence relation.

(ii) Structural congruence is closed by the application of E , i.e., CU B P ≡ Q implies CU B E [P] ≡ E [Q].

(iii) If P and Q are α-convertible, then CU B P ≡ Q.

(iv) The set of processes is an Abelian semigroup under | operator and unit element 0, i.e., for any CU , P , Q,
and R, we have CU B P |0 ≡ P , CU B P |Q ≡ Q|P , and CU B P |(Q|R) ≡ (P |Q)|R.

(v) For all A ∈ AU , if CU (A) = [A(x̃) , P], then CU B A(ỹ) ≡ P{ỹ/x̃}.
(vi) CU B (νa)0 ≡ 0.

(vii) If a /∈ fn(P), then CU B (νa)(P |Q) ≡ P |(νa)Q.

(viii) CU B (νa)(νb)P ≡ (νb)(νa)P .

We may elide CU in the specification of the structural congruence, if it is clear from the context.
Operational semantics We define unlabeled reduction system in Figure 2, using judgment CU , CL B κ −→

κ′. We may elide CU and CL in the specification of reduction steps, since they are static and may be clear from
the context, i.e., κ −→ κ′.

Note that according to structural congruence rules an agent invocation is structurally congruent to its defi-
nition (part v), and thus considered as an “implicit” step of execution according to rule STRUCT. Contrarily,
rule CALL defines an “explicit” reduction step for sub-agent invocations. This is due to some technicality in
our modeling: invocation of sub-agents could be logging preconditions and/or logging events (introduced in
Section 3.2), and hence need special semantic treatment at the time of call (discussed later in Sections 3.3 and
3.4), e.g., deciding whether a record must be stored in the log.

For a (potentially infinite) system trace τ = κ0κ1 · · · , we use notation CU , CL I τ to specify the generation
of trace τ under the universal and local codebases CU and CL, and according to the aforementioned unlabeled
reduction system, i.e., CU , CL B κi −→ κi+1 for all i ∈ {0, 1, · · · }.

For a system trace τ = κ0κ1 · · · , system s generates τ , denoted by s ⇓ τ iff s is defined as (1), κ0 is defined
as Ps, and CU , CL B κi −→ κi+1 for all i ∈ {0, 1, · · · }.

toFOL(·) instantiation for traces In order to specify a trace logically, we need to instantiate toFOL(·)
according to Definition 2.11. We consider the following predicates to logically specify a trace: Comm/3, Call/4,
Context/2, UniversalCB/3, and LocalCB/4. 6

Let CU , CL I τ , and τ = κ0 · · ·κκ′ · · · . Moreover, let t denote a timing counter. We define a function that
logically specifies a configuration within a trace. To this end, let the helper function toFOL(κ, t) return the
logical specification of κ at time t. Essentially, toFOL(κ, t) specifies what the evaluation context and the redex
are within κ at time t, defined as follows:

(i) toFOL(κ, t) = {Comm(t, a(x).P, āb.Q),Context(t, E)}, 7 if κ ≡ E [a(x).P | āb.Q] and κ′ ≡ E [P{b/x} | Q].

(ii) toFOL(κ, t) = {Call(t, A,B, ỹ),Context(t, E)}, if κ ≡ E [BA(ỹ))] and κ′ ≡ E [P{ỹ/x̃}]. Note that in
Call(t, A,B, ỹ), we treat ỹ as a single list of elements, rather than a sequence of elements passed as
parameters to Call, i.e., Call is always a quaternary predicate.

As an example, consider α-converted structurally equivalent processes. Let κ = a(x).(νb)x̄b.0|āb.0. Since
κ ≡ κ′ = a(x).(νd)x̄d.0|āb.0, and κ′ −→ (νd)b̄d.0|0, we have κ −→ (νd)b̄d.0|0 according to the rule STRUCT
in Figure 2. Then, toFOL(κ, t) = toFOL(κ′, t) = {Comm(t, a(x).(νd)x̄d.0, āb.0),Context(t, [])}.

Logical specification of universal and local codebases, denoted by 〈CU 〉 and 〈CL〉 resp., are defined as

(i) 〈CU 〉 = {UniversalCB(A, x̃, P) | CU (A) = [A(x̃) , P]}

6 /n refers to the arity of the predicate.
7 Processes and evaluation contexts appear as predicate arguments in this presentation to boost readability. Note that their
syntax can be written as string literals to comply with the syntax of predicate logic.

9

Amir-Mohammadian & Kari

(ii) 〈CL〉 = {LocalCB(A,B, x̃, P) | CL(A)(B) = [BA(x̃) , P]}
Note that in UniversalCB(A, x̃, P) and LocalCB(A,B, x̃, P), x̃ is a single list of elements, rather than a sequence
of elements passed as parameters to the predicates, and thus these predicates have fixed arities.

We define logical specification of traces both for finite and infinite cases according to the logical spec-
ification of configurations, and universal and local codebases, i.e., using toFOL(κ, t), 〈CU 〉, and 〈CL〉. Let
CU , CL I τ . If τ is finite, i.e., τ = κ0κ1 · · ·κn for some n, then its logical specification is defined as
toFOL(τ) =

⋃n
i=0 toFOL(κi, i)

⋃
〈CU 〉

⋃
〈CL〉. Otherwise, for infinite trace τ = κ0κ1 · · · , toFOL(τ) =⋃

τ ′∈prefix(τ) toFOL(τ ′)
⋃
〈CU 〉

⋃
〈CL〉, where toFOL(τ ′) =

⋃n
i=0 toFOL(κi, i), for τ ′ = κ0κ1 · · ·κn. It is

straightforward to show that toFOL(τ) is injective and monotonically increasing.

3.2 A Class of Logging Specifications

We define the class of logging specifications LScall that specify temporal relations among module invocations
in concurrent systems. LScall is the set of all logging specifications LS defined as spec(ΓG, {LoggedCall}),
where ΓG is a set of Horn clauses, called guidelines, including clauses of the form

∀t0, · · · , tn, xs0 , · · · , xsn .Call(t0, A0, B0, xs0)

n∧
i=1

(
Call(ti, Ai, Bi, xsi) ∧ ti < t0

)
∧ (2)

ϕ(t0, · · · , tn) ∧ ϕ′(xs0 , · · · , xsn) =⇒ LoggedCall(A0, B0, xs0),

in which for all j ∈ {0, · · · , n}, Aj ∈ AU , Bj ∈ AL, xsj is a placeholder for a list of parameters passed to Bj , and
Call(tj , Aj , Bj , xsj) specifies the event of invoking module (subprocess) Bj by the top-level process Aj at time
tj with parameters xsj . In (2), ϕ(t0, · · · , tn) is assumed to be a possibly empty conjunctive sequence of literals
of the form ti < tj . Moreover, we define triggers and logging events as Triggers(LS) = {(A1, B1), · · · , (An, Bn)}
and Logevent(LS) = (A0, B0), resp. Logging preconditions are predicates Call(ti, Ai, Bi, x̃) for all i ∈
{1, · · · , n}. As an additional condition, we assume that Logevent(LS) /∈ Triggers(LS).

Example 3.1 describes the logging specification for the breaking the glass policy specified in Section 1.2 for
a medical records system, using (2).

Example 3.1 We revisit the example described in Section 1.2, a microservices-based medical records system,
where breaking the glass entails logging the attempts to read patient medical history. Each microservice is
treated as an agent, i.e., agents Patient and Auth correspond to Patient and Authorization microservices,
resp. Let’s assume that a user can break the glass by invoking brkGlass function from Auth agent. Moreover,
reading patient medical history is accomplished by calling function getMedHist deployed by Patient agent.
Indeed, these functions are treated as sub-agents in our calculus, i.e., we assume the existence of definitions:

• CL(Auth)(brkGlass) = [brkGlassAuth(u) , P] for some process P , and

• CL(Patient)(getMedHist) = [getMedHistPatient(p, u) , Q] for some process Q.

Then, the logging specification for the breaking-the-glass auditing policy is LS = spec(ΓG, {LoggedCall}),
where ΓG includes the clause

∀t0, t1, p, u.Call(t0, Patient, getMedHist, [p, u]) ∧ Call(t1, Auth, brkGlass, [u]) ∧ t1 < t0 =⇒
LoggedCall(Patient, getMedHist, [p, u]).

In the clause above, t0 and t1 are timestamps where t1 is preceding t0. p refers to the patient identifier
whose medical history is requested. u is the healthcare provider (user) identifier who breaks the glass and then
attempts to read the medical history of patient p. Note that u is passed as an additional parameter to both
brkGlass and getMedHist. In practice, this is accomplished in microservices using access tokens. An API
gateway uses access tokens to communicate the identity of the service requester. One common approach to
implement access tokens is by JSON Web Tokens standard [32].

3.3 Target System Model

We define the target system model, denoted by Πlog, as an extension to Π with the following syntax and
semantics. The instrumentation algorithm’s job is to map a system specified in Π to a system in Πlog.

3.3.1 Syntax
Πlog extends prefixes with α ::= · · · | callEvent(A,B, x̃) | emit(A,B, x̃) | addPrecond(x,A) | sendPrecond(x,A).
x̃ is considered as a single list of names in callEvent and emit, so that they have fixed arities.

10

Amir-Mohammadian & Kari

PI
CU , CL B P −→ Q

CU , CL,ΓG B (t, P,∆,Σ,Λ) −→ (t+ 1, Q,∆,Σ,Λ)

CALL EV
∆′(A) = ∆(A) ∪ {Call(t, A,B, x̃)} ∀A′ ∈ AU − {A}.∆′(A′) = ∆(A′)

CU , CL,ΓG B (t, callEvent(A,B, x̃).P,∆,Σ,Λ) −→ (t+ 1, P,∆′,Σ,Λ)

ADD PRECOND
Σ′(A) = Σ(A) ∪ {x} ∀A′ ∈ AU − {A}.Σ′(A′) = Σ(A′)

CU , CL,ΓG B (t, addPrecond(x,A).P,∆,Σ,Λ) −→ (t+ 1, P,∆,Σ′,Λ)

SEND PRECOND
y = serialize(∆(A))

CU , CL,ΓG B (t, sendPrecond(x,A).P,∆,Σ,Λ) −→ (t+ 1, x̄y.P,∆,Σ,Λ)

LOG
Σ(A) ∪∆(A) ∪ ΓG ` LoggedCall(A,B, x̃) Λ′(A) = Λ(A) ∪ {LoggedCall(A,B, x̃)} ∀A′ ∈ AU − {A}.Λ′(A′) = Λ(A′)

CU , CL,ΓG B (t, emit(A,B, x̃).P,∆,Σ,Λ) −→ (t+ 1, P,∆,Σ,Λ′)

NO LOG
Σ(A) ∪∆(A) ∪ ΓG 0 LoggedCall(A,B, x̃)

CU , CL,ΓG B (t, emit(A,B, x̃).P,∆,Σ,Λ) −→ (t+ 1, P,∆,Σ,Λ)

Fig. 3. Unlabeled reduction semantics of Πlog.

A configuration κ, in Πlog, is defined as the quintuple κ ::= (t, P,∆,Σ,Λ), with the following details. t is a
timing counter. P is the process associated with the whole concurrent system. Processes in Πlog are defined
similar to Π, without any extensions. ∆(·) is a mapping that receives an agent identifier A and returns the
set of logical preconditions (to log) that denote the events transpired locally in that agent. That is, ∆(A) is a
set of predicates of the form Call(t, A,B, x̃). Σ(·) is a mapping that receives an agent identifier A and returns
the set of all logical preconditions that have taken place in the triggers, i.e., in all agents A′ ∈ AU , where
(A′, B) ∈ Triggers for some B ∈ AL. That is, Σ(A) is a set of predicates of the form Call(t, A′, B, x̃), where
(A′, B) ∈ Triggers. These preconditions are supposed to be gathered by A from other agents A′, in order to
decide whether to log an event. Λ(·) is a mapping that receives an agent identifier A and returns the audit log
recorded by that agent. Λ(A) is a set of predicates of the form LoggedCall(A,B, x̃). The initial configuration
is κ0 = (0, Ps,∆0,Σ0,Λ0), where for any A ∈ CU , ∆0(A) = Σ0(A) = Λ0(A) = ∅.

3.3.2 Semantics
We use judgment CU , CL,ΓG B κ −→ κ′ to specify a step of reduction in Πlog. Figure 3 depicts the unlabeled
reduction semantics of Πlog. CU , CL, and ΓG may be elided in the specification of reduction steps since they
are static and may be clear from the context.

Πlog inherits the reduction semantics of Π, according to rule PI. Rule CALL EV gives the reduction with
prefix callEvent(A,B, x̃). In this case, ∆ gets updated for agent A with information about the invocation of
subprocess BA. In rule ADD PRECOND, reduction with the prefix addPrecond(x,A) is specified. In this
case, x is added to Σ. Rule SEND PRECOND is about the reduction with prefix sendPrecond(x,A). In this
case, the set of logging preconditions that are collected by A, i.e., ∆(A), is converted to a transferable object
(aka object serialization), e.g., a string of characters describing the content of ∆(A), and sent though link
x. Let serialize() be the semantic function that handles this conversion. With prefix emit(A,B, x̃), agent
A is supposed to study whether the predicate LoggedCall(A,B, x̃) is logically derivable from the local set of
preconditions, i.e., ∆(A), the set of preconditions that are collected by other agents involved in the enforcement
of the logging specification, i.e., Σ(A), and the set of guidelines ΓG. If the predicate is derivable, then it is
added to the audit log of A, i.e., Λ(A). Otherwise, the log does not change. Rule LOG specifies the former
case, whereas the rule NO LOG specifies the latter.

For a (potentially infinite) system trace τ = κ0κ1 · · · , we use notation CU , CL,ΓG I τ to specify the
generation of trace τ under the universal codebase CU , local codebase CL, and set of guidelines ΓG, according
to the reduction system, i.e., CU , CL,ΓG B κi −→ κi+1 for all i ∈ {0, 1, · · · }.

The generated trace in Πlog out of a target system s, i.e., s ⇓ τ , can be defined in the same style as defined
in Π, i.e., by some valid initial system in Πlog

8 , the initial configuration κ0 in Πlog, and the aforementioned
reduction system for Πlog.

The residual log of a configuration is defined as logof (κ) = L =
⋃
A∈AU

Λ(A), where κ = (, , , ,Λ). 9 This

instantiates τ L for Πlog (Definition 2.4). Since L is a set of logical literals, it suffices to define toFOL(·) for
audit logs as toFOL(L) = L, which completes the instantiation of bLc (Definition 2.11).

8 In Section 3.4 one such initial system is given by the instrumentation algorithm.
9 Underscore is used as wildcard.

11

Amir-Mohammadian & Kari

Note that arbitrary systems in Πlog do not guarantee any correctness of audit logging. However, there
is a subset of systems in Πlog that provably satisfy this property. These systems use the extended prefixes
(introduced as part of Πlog syntax) in a particular way for this purpose. In the following section, we introduce an
instrumentation algorithm to map any system in Π to a system in Πlog, and later prove that any instrumented
system satisfies correctness results for audit logging.

3.4 Instrumentation Algorithm

Instrumentation algorithm I takes a Π system, defined in (1), and a logging specification LS ∈ LScall ,
defined in Section 3.2, and produces a system s′ in Πlog defined as s′ =

〈
P ′s, C′U , C′L

〉
, where P ′s =

(νc̃)(νc̃′)(A1(x̃′1) | A2(x̃′2) | · · · | Am(x̃′m)). c̃′ is the sequence of names of the form cij which are all fresh, i.e.,
they are not used already in (1). Moreover, it is assumed that sub-agent identifiers Dij are also fresh, i.e., they
are undefined in CL component of (1).

Intuitively, I works as follows.

(i) I adds new links cij between agents Ai and Aj , where Ai is the agent that includes a sub-agent whose
invocation is considered a logging event, and Aj is some agent that includes a sub-agent whose invocation
is a trigger for that logging event. cij is used as a link between Ai and Aj to communicate logging
preconditions (by sendPrecond and addPrecond prefixes).

(ii) Regarding the invocation of a sub-agent BA,
(a) if the invocation of BA is a trigger, then the execution of BA must be preceded by callEvent prefix.

This way, the invocation of BA is stored in A’s local set of logging precondition (∆(A)), according to
the rule CALL EV.

(b) if the invocation of BA is a logging event, then execution of BA must be preceded by callEvent, similar
to the case above. Next, it must communicate on appropriate links (cijs) with all other agents that
are involved as triggers according to the logging specification. To this end, BA is supposed to notify
each of those agents to send their collected preconditions. After receiving all those preconditions from
involved agents on the dedicated links, it adds them to Σ(A). This is done using addPrecond prefixes,
according to the rule ADD PRECOND. Then, it studies whether the invocation must be logged,
before following normal execution. This is facilitated by emit prefix (rules LOG and NO LOG).

(c) if the invocation of BA is neither a trigger nor a logging event, then that sub-agent executes without
any change in behavior.

(iii) Regarding the invocation of an agent A
(a) if A includes a sub-agent BA whose invocation is considered a trigger, then A must be able to receive

and handle incoming requests for collected preconditions. This is done by adding a subprocess to
A that always listens for requests on the dedicated link (cij) between itself and the agent that may
send such requests. Upon receiving such a request, it sends back the preconditions, handled by prefix
sendPrecond according to the rule SEND PRECOND, and then continues to listen on the link.

(b) if A does not include any trigger invocation of a sub-agent, then A executes without any changes.

Formally, the details of the returned system s′ are as follows:

(i) c̃′: is the sequence of all names cij where (Ai, B) = Logevent(LS) for some B ∈ AL, and (Aj , B
′) ∈

Triggers(LS) for some B′ ∈ AL.

(ii) C′L:

(a) C′L(A)(B) = [BA(x̃) , callEvent(A,B, x̃).P], if (A,B) ∈ Triggers(LS) and CL(A)(B) = [BA(x̃) , P].

(b) C′L(A0)(B0) = [BA0
0 (x̃) , callEvent(A0, B0, x̃) . ¯c01 . · · · . ¯c0n . c01(p1) . · · · . c0n(pn) . addPrecond(p1, A0).

· · · . addPrecond(pn, A0) . emit(A0, B0, x̃).P], if (A0, B0) = Logevent(LS), CL(A0)(B0) = [BA0
0 (x̃) ,

P], and Triggers(LS) = {(A1, B1), · · · , (An, Bn)}.
(c) C′L(A)(B) = CL(A)(B), otherwise.

(iii) C′U :
(a) If (Aj , B) ∈ Triggers(LS) for some B ∈ AL, and Ai be the agent that (Ai, B

′) = Logevent(LS)

for some B′ ∈ AL, then C′U (Aj) = [Aj(x̃, cij) , P |DAj

ij (cij)], where CU (Aj) = [Aj(x̃) , P], and

C′L(Aj)(Dij) = [D
Aj

ij (cij) , cij .sendPrecond(cij , Aj).D
Aj

ij (cij)].

(b) If (Aj , B) /∈ Triggers(LS) for any B ∈ AL, then C′U (Aj) = CU (Aj).

Note that Dij is defined recursively to facilitate listening on cij indefinitely for incoming requests about
logging preconditions. In addition, since cij is fresh, cij /∈ fn(P). Therefore, P cannot communicate on this link,
e.g., to compromise logging attempts. Figure 4 illustrates the established links between sub-agents of different

12

Amir-Mohammadian & Kari

Fig. 4. Illustration of the established links in the instrumented concurrent system.

Fig. 5. Example: Illustration of the established link in the instrumented medical records system.

trim(0) = 0 trim(α.P) =

trim(P) if α = cij , c̄ij , cij(x), c̄ijx,

callEvent(A,B, x̃), addPrecond(x,A),

sendPrecond(x,A), emit(A,B, x̃)

α.trim(P) otherwise

trim(P |Q) =

trim(P) if Q = DA

ij for some i, j, A

trim(Q) if P = DA
ij for some i, j, A

trim(P)|trim(Q) otherwise

trim((νx)P) =

{
trim(P) if x = cij for some i, j

(νx)trim(P) otherwise

trim(C(x̃)) =

{
trim(C(ỹ)) if x̃ = ỹ, cij for some i, j

C(x̃) otherwise

Fig. 6. Function trim.

agents according to the guideline defined in (2). These links are used to communicate logging preconditions
between the logging event and the triggers.

Example 3.2 depicts how the medical records system described in Section 1.2 is instrumented according to
the specified instrumentation algorithm, and the logging specification given in Example 3.1.

Example 3.2 In Example 3.1, (Patient, getMedHist) is the logging event, and {(Auth, brkGlass)} is the
set of triggers. Applying the instrumentation algorithm changes the systems as follows. A new link cPA is
established between Patient and Auth agents. The definition of brkGlass is updated as C′L(Auth)(brkGlass) =

[brkGlassAuth(u) , callEvent(Auth, brkGlass, [u]).P], and the definition of getMedHist is updated as

C′L(Patient)(getMedHist) = [getMedHistPatient(p, u) , callEvent(Patient, getMedHist, [p, u]).c̄PA.cPA(f).

addPrecond(f, Patient).emit(Patient, getMedHist, [p, u]).Q].

In addition subprocess DPA is added to agent Auth that indefinitely responds to the requests from Patient on
link cPA, defined as: C′L(Auth)(DPA) = [DAuth

PA (cPA) , cPA.sendPrecond(cPA, Auth).DAuth
PA (cPA)]. Figure 5 illustrates

the established link between the sub-agents of the two agents.

3.4.1 Instantiation of :≈
According to Definition 2.5, semantics preservation relies on an abstraction of correspondence relation :≈
between source and target traces. In this section, we instantiate this relation for I. We define the source
and target trace correspondence relation as follows: τ1κ1 :≈ τ2κ2 iff κ1 = P1, κ2 = (t2, P2,∆2,Σ2,Λ2), and
trim(P2) = P1. Function trim is formally defined in Figure 6. Intuitively, it removes all prefixes, sub-agents,
and link names that I may add to a process.

13

Amir-Mohammadian & Kari

3.4.2 Main Results
Main properties include three results. The instrumentation algorithm I is semantics preserving, deadlock-free,
correct. These are specified in Theorems 3.3, 3.4, and 3.5, resp. Proofs of the theorems are given in our
accompanying Technical Report [20].

Theorem 3.3 (Semantics preservation) I is semantics preserving (Definition 2.5).

Theorem 3.4 (Deadlock-freeness) I is deadlock-free (Definition 2.6).

Theorem 3.5 (Instrumentation correctness) I is correct (Definition 2.7).

4 Related Work

Majority of previous work on audit logging in concurrent environments focus on audit log analysis (e.g., [33])
and security concerns regarding in transit and/or at rest log information (e.g., [34,35,36]). Studies regarding
the collection of logs from multiple monitors in distributed intrusion detection systems are such instances (e.g.,
[37,38]). However, previous work do not reflect on the generation of the log, and assume that the audit log is
given. This line of work includes studies on the security of audit logs in terms of their secrecy and integrity
within concurrent environments. For example, Yavuz et al. [35] propose a logging scheme that guarantees
forward security, employing cryptographic techniques. In the same line of work, Böck et al. [39] propose a
system that ensures that logs are trustworthy. Our work is however orthogonal to the notion of audit log
security. Using cryptographic techniques to ensure verifiable confidentiality and integrity of the audit log does
not guarantee it to be correct. We employ a semantic framework by which the content of the audit log can be
judged against the execution trace of the concurrent system given in π calculus (Definition 2.3).

Cederquist et al. [40] and Corin et al. [41] propose predicate logic frameworks to specify and enforce
accountability requirements in distributed systems. The former proposes a framework that ensures user ac-
countability in discretionary access control. The latter studies user accountability in access to personal data
that are associated with usage policies defined by the owner of data, and can be distributed among users.
Jagadeesan et al. [42] use turn-based games to analyze distributed accountability systems. Guts. et al. [43]
use static type enforcement to assure that a distributed system generates sufficient audit logs. However, our
approach is dynamic and relies on instrumentation techniques that can be applied to legacy systems which may
inherently suffer from the lack of correct audit logging mechanisms. With respect to system instrumentation for
auditing purposes, our work is related to the language proposed by Martin et al. [44] that facilitates querying
runtime behavior of a program.

Another line of work employs logs to record proof of legitimate access to system resources. Vaughn et
al. [45] propose an architecture based on trusted kernels that rely on such logged proofs. Another related
work is the a posteriori compliance control system [46] that verifies legitimacy of access after the fact, using a
trust-based logical framework that focuses on a limited set of operations. However, our logical framework is
used to specify invocation of any arbitrary operation as a precondition to log, or the logging event.

Audit logs can be considered a form of provenance [47]. CamFlow [48] is an auditing and provenance
capture utility in Linux that can easily integrate with distributed systems. Pasquier et al. [49] make strong
case for accountability, data provenance and audit in the IoT. AccessProv [5] is proposed as an instrumentation
tool that rewrites legacy Java applications for provenance and finds bugs in authorization systems. Kacianka
et al. [50] propose a formal model of accountability for cyber-physical systems.

Amir-Mohammadian et al. [11] propose a semantic framework for audit logging based on the theory of
information algebra [51,12]. Their implementation model is restricted to sequential computation. This model
is therefore insufficient to apply on concurrent systems where logging preconditions and logging events may
transpire in different execution threads. Moreover, their implementation model is restricted to deterministic
system behavior. Our work generalizes the application of information-algebraic semantics of audit logging to
concurrent environments, which naturally behave non-deterministically at runtime. We show that the semantic
framework is inclusive enough for this purpose. Similar to [11], we propose a provably correct instrumentation
algorithm. However, our algorithm retrofits a concurrent system (rather than a simple sequential program)
according to a formal description of audit logging requirements. Information-algebraic semantic framework for
audit logging has also been used to enhance dynamic integrity taint analysis through after-the-fact study of
audit logs [8,9]. This line of work introduces maybe-tainted tags for data objects and proposes an implemen-
tation model on a core functional object-oriented calculus that provably ensures correctness of generated audit
logs. However, it does not address the problem of deploying audit logging in concurrent environments.

Recently, Justification Logic [52] is used to formally characterize auditing of computational units [53,54,55]
which result in programming languages that enable applications to study their own audit trails and decide
accordingly. This is a separate theoretical problem than what we are aiming in this work.

Microservices-based approach [56,57] to software deployment is an application of our implementation model,
that we aim to study in future in a greater detail. Accountability plays a significant role as part of the access

14

Amir-Mohammadian & Kari

control framework in microservices-based systems [58], including platform-specific monitoring techniques, e.g.,
in Azure Kubernetes Service [59]. Smith et al. [60] have proposed a provenance management system, including
provenance logger, for microservices-based applications. Camilli et al. [61] have proposed a semantics for
microservices based on Petri nets. Our approach is, however, language-based and relies on process calculi.
Jolie [21] is the major programming language for the deployment of microservices, whose semantics [22,23] is
defined as a process calculus, heavily influenced by π-calculus.

5 Future Work and Conclusion

In this paper, we have proposed an implementation model to enforce correct audit logging in concurrent envi-
ronments. In essence, we have proposed an algorithm that instruments legacy concurrent systems according to
a formal specification of audit logging requirements. We use Horn clause logic to specify these logging require-
ments, which assert temporal relations among the events that transpire in different concurrent components of
the system. We have proven that our algorithm is semantics preserving, i.e., the instrumented system behaves
similar to the original system, modulo operations that correspond to audit logging. Moreover, we have proven
that our algorithm guarantees correct audit logs. This ensures that the instrumented system avoids missing
any logging event, as well as logging unnecessary events. Correctness of audit logs are defined according to
an information-algebraic semantic framework. In this semantic framework, information containment is used to
compare the runtime behavior vs. the generated audit log.

We have argued that the our instrumentation algorithm proposes a model to implement audit logging in
real concurrent systems, e.g., in microservices-based medical records systems (Examples 3.1 and 3.2). In this
paper, we have aimed at the formal specification of the model on an abstract core calculus to demonstrate
the main ideas for future deployment. In future work, we intend to consider real-world language settings,
relying on the fundamental results established in this work. In particular, we are aiming to deploy our existing
instrumentation algorithm in Spring Boot [18], a Java microservices framework. Indeed, to provide formal
guarantees of audit logging correctness in such real-world settings that are implemented using our model,
translation of systems to Π systems is required.

Another area of interest is to extend the class of logging specifications, and hence implementation models.
Our current class focuses on function invocations within each agent of the system, and it is limited to Horn
clauses. While a great percentage of system events can be specified in this class, we need other classes of logging
specifications for certain purposes. For example, consider the effect of revoking break-the-glass status for a
user on the specification of audit logging requirements. Moreover, auditing usually includes the log of message
transmissions between specific agents, which is not supported by what we have introduced in this paper.

Since our model of concurrency is based on a process calculi, message-passing is used for IPC. This ne-
cessitates the exploration of models that study the specification and enforcement of correct audit logging in
concurrent environments which handle IPC through alternative approaches, e.g., shared memory and/or files.

References

[1] C. Staicu, D. Schoepe, M. Balliu, M. Pradel, and A. Sabelfeld, “An empirical study of information flows in real-world
javascript,” CoRR, vol. abs/1906.11507, 2019.

[2] H. DeYoung, D. Garg, L. Jia, D. K. Kaynar, and A. Datta, “Experiences in the logical specification of the HIPAA and GLBA
privacy laws,” in WPES 2010, 2010, pp. 73–82.

[3] H. DeYoung, D. Garg, L. Jia, D. Kaynar, and A. Datta, “Privacy policy specification and audit in a fixed-point logic: How to
enforce HIPAA, GLBA, and all that,” Carnegie Mellon University, Tech. Rep. CMU-CyLab-10-008, April 2010.

[4] T. Xu, H. M. Naing, L. Lu, and Y. Zhou, “How do system administrators resolve access-denied issues in the real world?” in
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 2017, pp. 348–361.

[5] F. Capobianco, C. Skalka, and T. Jaeger, “ACCESSPROV: Tracking the provenance of access control decisions,” in 9th
USENIX Workshop on the Theory and Practice of Provenance (TaPP 2017), 2017.

[6] W. Zhang, Y. Chen, T. Cybulski, D. Fabbri, C. Gunter, P. Lawlor, D. Liebovitz, and B. Malin, “Decide now or decide later?:
Quantifying the tradeoff between prospective and retrospective access decisions,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2014, pp. 1182–1192.

[7] S. Amir-Mohammadian, S. Chong, and C. Skalka, “Foundations for auditing assurance,” in Layered Assurance Workshop,
2015.

[8] S. Amir-Mohammadian and C. Skalka, “In-depth enforcement of dynamic integrity taint analysis,” in Programming Languages
and Analysis for Security, 2016.

[9] C. Skalka, S. Amir-Mohammadian, and S. Clark, “Maybe tainted data: Theory and a case study,” Journal of Computer
Security, vol. 28, no. 3, pp. 295–335, April 2020.

15

Amir-Mohammadian & Kari

[10] “Top 10-2017 A10-Insufficient Logging & Monitoring,” https://owasp.org/www-project-top-ten/OWASP Top Ten 2017/Top
10-2017 A10-Insufficient Logging%252526Monitoring, 2017, accessed: 2020-06-04.

[11] S. Amir-Mohammadian, S. Chong, and C. Skalka, “Correct audit logging: Theory and practice,” in Principals of Security and
Trust, 2016, pp. 139–162.

[12] J. Kohlas and J. Schmid, “An algebraic theory of information: An introduction and survey,” Information, vol. 5, no. 2, pp.
219–254, 2014.

[13] P. Matthews and H. Gaebel, “Break the glass,” in HIE Topic Series. Healthcare Information and Management Systems
Society, 2009.

[14] “Learning the lessons of the Dixons Carphone breach,”
https://www.zdnet.com/article/learning-the-lessons-of-the-dixons-carphone-breach/, 2020, accessed: 2020-01-15.

[15] “SWI Prolog,” https://www.swi-prolog.org/, accessed: 2019-09-15.

[16] “XSB Prolog,” https://xsb.com/xsb-prolog, accessed: 2019-09-15.

[17] R. Milner, Communicating and mobile systems: the pi calculus. Cambridge university press, 1999.

[18] P. Webb, D. Syer, J. Long, S. Nicoll, R. Winch, A. Wilkinson, M. Overdijk, C. Dupuis, and S. Deleuze, “Spring boot reference
guide,” Part IV. Spring Boot features, vol. 24, 2013.

[19] C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble, “Adding trace matching with free variables to AspectJ,” in OOPSLA 2005, 2005, pp. 345–364.

[20] S. Amir-Mohammadiah and C. Kari, “Correct audit logging in concurrent systems (technical report),” https://sepehram.
github.io/pubs/tr20-audit.pdf, University of the Pacific, Tech. Rep., 2020.

[21] “Jolie Programming Language,” https://www.jolie-lang.org/, accessed: 2019-09-18.

[22] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro, “Sock: a calculus for service oriented computing,” in International
Conference on Service-Oriented Computing. Springer, 2006, pp. 327–338.

[23] F. Montesi and M. Carbone, “Programming services with correlation sets,” in International Conference on Service-Oriented
Computing. Springer, 2011, pp. 125–141.

[24] “Microservices in Healthcare: Granulate to Accelerate,” https://vicert.com/local/resources/assets/pdf/WhitePaper
Microservices%20in%20Healthcare.pdf, 2019, accessed: 2020-02-25.

[25] “Global Microservices In Healthcare Market Will Reach USD 519 Million By 2025,” https://www.globenewswire.com/
news-release/2019/03/14/1753060/
0/en/Global-Microservices-In-Healthcare-Market-Will-Reach-USD-519-Million-By-2025-Zion-Market-Research.html, 2019,
accessed: 2019-09-01.

[26] F. B. Schneider, “Enforceable security policies,” ACM Transactions on Information and System Security, vol. 3, no. 1, pp.
30–50, 2000.

[27] Ú. Erlingsson, “The inlined reference monitor approach to security policy enforcement,” Ph.D. dissertation, Cornell University,
2003.

[28] S. Amir-Mohammadian, “A formal approach to combining prospective and retrospective security,” Ph.D. dissertation, The
University of Vermont, July 2017.

[29] C. A. R. Hoare, “Communicating sequential processes,” in The origin of concurrent programming. Springer, 1978, pp.
413–443.

[30] R. Milner, Communication and concurrency. Prentice hall New York etc., 1989, vol. 84.

[31] J. Parrow, “An introduction to the π-calculus,” in Handbook of Process Algebra. Elsevier, 2001, pp. 479–543.

[32] “Introduction to JSON Web Tokens,” https://jwt.io/introduction/, 2019, accessed: 2019-09-02.

[33] A. Mounji, B. L. Charlier, D. Zampuniéris, and N. Habra, “Distributed audit trail analysis,” in 1995 Symposium on Network
and Distributed System Security, (S)NDSS ’95, San Diego, California, February 16-17, 1995, 1995, pp. 102–113.

[34] A. J. Lee, P. Tabriz, and N. Borisov, “A privacy-preserving interdomain audit framework,” in Proceedings of the 2006 ACM
Workshop on Privacy in the Electronic Society, WPES 2006, Alexandria, VA, USA, October 30, 2006, 2006, pp. 99–108.

[35] A. A. Yavuz and P. Ning, “BAF: an efficient publicly verifiable secure audit logging scheme for distributed systems,” in
Twenty-Fifth Annual Computer Security Applications Conference, ACSAC 2009, Honolulu, Hawaii, 7-11 December 2009,
2009, pp. 219–228.

[36] R. Accorsi, “Bbox: A distributed secure log architecture,” in Public Key Infrastructures, Services and Applications - 7th
European Workshop, EuroPKI 2010, Athens, Greece, September 23-24, 2010. Revised Selected Papers, 2010, pp. 109–124.

[37] Y. Wu, B. Foo, Y. Mei, and S. Bagchi, “Collaborative intrusion detection system (CIDS): A framework for accurate and
efficient IDS,” in 19th Annual Computer Security Applications Conference (ACSAC 2003), 8-12 December 2003, Las Vegas,
NV, USA, 2003, pp. 234–244.

16

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A10-Insufficient_Logging%252526Monitoring
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A10-Insufficient_Logging%252526Monitoring
https://www.zdnet.com/article/learning-the-lessons-of-the-dixons-carphone-breach/
https://www.swi-prolog.org/
https://xsb.com/xsb-prolog
https://sepehram.github.io/pubs/tr20-audit.pdf
https://sepehram.github.io/pubs/tr20-audit.pdf
https://www.jolie-lang.org/
https://vicert.com/local/resources/assets/pdf/WhitePaper_Microservices%20in%20Healthcare.pdf
https://vicert.com/local/resources/assets/pdf/WhitePaper_Microservices%20in%20Healthcare.pdf
https://www.globenewswire.com/news-release/2019/03/14/1753060/0/en/Global-Microservices-In-Healthcare-Market-Will-Reach-USD-519-Million-By-2025-Zion-Market-Research.html
https://www.globenewswire.com/news-release/2019/03/14/1753060/0/en/Global-Microservices-In-Healthcare-Market-Will-Reach-USD-519-Million-By-2025-Zion-Market-Research.html
https://www.globenewswire.com/news-release/2019/03/14/1753060/0/en/Global-Microservices-In-Healthcare-Market-Will-Reach-USD-519-Million-By-2025-Zion-Market-Research.html
https://jwt.io/introduction/

Amir-Mohammadian & Kari

[38] V. Yegneswaran, P. Barford, and S. Jha, “Global intrusion detection in the DOMINO overlay system,” in Proceedings of the
Network and Distributed System Security Symposium, NDSS 2004, San Diego, California, USA, 2004.

[39] B. Böck, D. Huemer, and A. M. Tjoa, “Towards more trustable log files for digital forensics by means of “trusted computing”,”
in AINA 2010. IEEE Computer Society, 2010, pp. 1020–1027.

[40] J. G. Cederquist, R. Corin, M. A. C. Dekker, S. Etalle, J. I. den Hartog, and G. Lenzini, “Audit-based compliance control,”
International Journal of Information Security, vol. 6, no. 2-3, pp. 133–151, 2007.

[41] R. Corin, S. Etalle, J. I. den Hartog, G. Lenzini, and I. Staicu, “A logic for auditing accountability in decentralized systems,”
in FAST 2004, 2004, pp. 187–201.

[42] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely, “Towards a theory of accountability and audit,” in ESORICS 2009, 2009,
pp. 152–167.

[43] N. Guts, C. Fournet, and F. Z. Nardelli, “Reliable evidence: Auditability by typing,” in European Symposium on Research in
Computer Security. Springer, 2009, pp. 168–183.

[44] M. Martin, B. Livshits, and M. S. Lam, “Finding application errors and security flaws using PQL: A program query language,”
in OOPSLA 2005. ACM, 2005, pp. 365–383.

[45] J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic, “Evidence-based audit,” in CSF 2008, 2008, pp. 177–191.

[46] S. Etalle and W. H. Winsborough, “A posteriori compliance control,” in SACMAT 2007, 2007, pp. 11–20.

[47] W. Ricciotti, “A core calculus for provenance inspection,” in Proceedings of the 19th International Symposium on Principles
and Practice of Declarative Programming. ACM, 2017, pp. 187–198.

[48] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and J. Bacon, “Practical whole-system provenance
capture,” in Proceedings of the 2017 Symposium on Cloud Computing. ACM, 2017, pp. 405–418.

[49] T. Pasquier, J. Singh, J. Powles, D. Eyers, M. Seltzer, and J. Bacon, “Data provenance to audit compliance with privacy
policy in the internet of things,” Personal and Ubiquitous Computing, vol. 22, no. 2, pp. 333–344, 2018.

[50] S. Kacianka and A. Pretschner, “Understanding and formalizing accountability for cyber-physical systems,” in 2018 IEEE
International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2018, pp. 3165–3170.

[51] J. Kohlas, Information Algebras: Generic Structures For Inference, ser. Discrete mathematics and theoretical computer
science. Springer, 2003.

[52] S. Artemov, “Justification logic,” in European Workshop on Logics in Artificial Intelligence. Springer, 2008, pp. 1–4.

[53] F. Bavera and E. Bonelli, “Justification logic and audited computation,” Journal of Logic and Computation, vol. 28, no. 5,
pp. 909–934, 2015.

[54] W. Ricciotti and J. Cheney, “Strongly normalizing audited computation,” arXiv preprint arXiv:1706.03711, 2017.

[55] W. Ricciotti and J. Cheney, “Explicit auditing,” arXiv preprint arXiv:1808.00486, 2018.

[56] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Safina, “Microservices: yesterday,
today, and tomorrow,” in Present and ulterior software engineering. Springer, 2017, pp. 195–216.

[57] C. Guidi, I. Lanese, M. Mazzara, and F. Montesi, “Microservices: a language-based approach,” in Present and Ulterior Software
Engineering. Springer, 2017, pp. 217–225.

[58] M. McLarty, R. Wilson, and S. Morrison, Securing Microservice APIs. O’Reilly Media, Inc., 2018.

[59] M. Wasson, “Monitoring a microservices architecture in Azure Kubernetes Service (AKS),” https://docs.microsoft.com/en-us/
azure/architecture/microservices/logging-monitoring, 2019, accessed: 2019-09-15.

[60] W. Smith, T. Moyer, and C. Munson, “Curator: provenance management for modern distributed systems,” in 10th USENIX
Workshop on the Theory and Practice of Provenance (TaPP 2018), 2018.

[61] M. Camilli, C. Bellettini, L. Capra, and M. Monga, “A formal framework for specifying and verifying microservices based
process flows,” in International Conference on Software Engineering and Formal Methods. Springer, 2017, pp. 187–202.

17

https://docs.microsoft.com/en-us/azure/architecture/microservices/logging-monitoring
https://docs.microsoft.com/en-us/azure/architecture/microservices/logging-monitoring

	Introduction
	Paper Outline
	An Example: Microservices-based Medical Records Systems
	Threat Model

	Semantics of Audit Logging
	Information-Algebraic Semantic Framework
	Instantiation of Logging Specification

	Implementation Model on Concurrent Systems
	Source System Model
	A Class of Logging Specifications
	Target System Model
	Instrumentation Algorithm

	Related Work
	Future Work and Conclusion
	References

