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ABSTRACT
Dynamic taint analysis can be used as a defense against low-integrity
data in applications with untrusted user interfaces. An important
example is defense against XSS and injection attacks in programs
with web interfaces. Data sanitization is commonly used in this
context, and can be treated as a precondition for endorsement in
a dynamic integrity taint analysis. However, sanitization is often
incomplete in practice. We develop a model of dynamic integrity
taint analysis for Java that addresses imperfect sanitization with an
in-depth approach. To avoid false positives, results of sanitization
are endorsed for access control (aka prospective security), but are
tracked and logged for auditing and accountability (aka retrospec-
tive security). We show how this heterogeneous prospective/retro-
spective mechanism can be specified as a uniform policy, separate
from code. We then use this policy to establish correctness condi-
tions for a program rewriting algorithm that instruments code for
the analysis. The rewriting itself is a model of existing, efficient
Java taint analysis tools.

1. INTRODUCTION
Dynamic taint analysis implements a “direct” or “explicit” infor-

mation flow analysis to support a variety of security mechanisms.
Like information flow generally, taint analysis can be used to sup-
port either confidentiality or integrity properties. An important ap-
plication of integrity taint analysis is to prevent the input of un-
trusted data to security sensitive operations, in particular to combat
cross-site scripting (XSS) and SQL injection attacks in web appli-
cations [15]. Any untrusted user input is marked as tainted, and
then taint is tracked and propagated through program values to en-
sure that tainted data is not used by security sensitive operations.

Of course, since web applications aim to be interactive, user
input is needed for certain security sensitive operations such as
database calls. To combat this, sanitization is commonly applied
in practice to analyze and possibly modify data. From a taint anal-
ysis perspective, sanitization is a precondition for integrity endorse-
ment, i.e. subsequently viewing sanitization results as high integrity
data. However, while sanitization is usually endorsed as “perfect”
by taint analysis, in fact it is not. Indeed, previous work has iden-
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tified a number of flaws in existing sanitizers in a variety of appli-
cations [25, 15]. For instance in a real-world news managements
system [25], user input is supposed be a numerical value, but due
to erroneous implementation of input sanitizer, the flawed saniti-
zation mechanism admits a broader range of data. This results in
SQL command injection vulnerability. We call such incomplete
sanitizers partially trusted or imperfect throughout the paper.

Thus, a main challenge we address in this paper is how to miti-
gate imperfect sanitization in taint analysis. Our solution is an in-
depth approach [10]– we propose to use a combination of prospec-
tive and retrospective measures to reduce false positives while still
providing security measures in the presence of imperfect sanitiza-
tion. We are concerned about both efficiency and correctness– our
taint analysis model is intended to capture the essence of Phos-
phor [3, 4], an existing Java taint analysis system with empirically
demonstrated efficiency, and our approach to retrospective security
is intended to minimize the size of logs [1]. The theoretical foun-
dations we establish in this paper are intended to support a Java
rewriting algorithm that is specifically intended to instrument secu-
rity in the legacy OpenMRS medical records system with accept-
able performance overhead. This would extend upon our previous
in-depth security tools for OpenMRS [1]. However, the formula-
tions proposed here could be applied more broadly.

Uniform Policy Specification and Instrumentation Cor-
rectness.

An important feature of our approach is a uniform expression
of an in-depth security policy, that combines the typical blocking
(prospective) behavior of taint-based access control with audit log-
ging (retrospective) features. Furthermore, our policy specification
for both prospective and retrospective analyses are separate from
code, rather than being embedded in it. Our policy language and se-
mantics are based on a well-developed formal foundation explored
in previous work [1]. This work also establishes correctness condi-
tions for policy implementations. We propose a rewriting algorithm
that instruments code with support for in-depth integrity taint anal-
ysis in the presence of partially trusted sanitization, and prove that
it is correct with respect to the in-depth policy specification. This
algorithm and its proof of correctness result is formulated with re-
spect to an idealized language model. Implementation in a real-
world general purpose language setting is a topic for future work.

1.1 Vulnerability and Countermeasures
Our work is significantly inspired by a previously unreported se-

curity flaw in OpenMRS [18], a Java-based open-source web appli-
cation for medical records. This flaw allows an attacker to launch
persistent XSS attacks1. When a web-based software receives and

1We have responsibly disclosed the vulnerabilities we have found



stores user input without proper sanitization, and later, retrieves
these information to (other) users, persistent XSS attacks could take
place.

OpenMRS uses a set of validators to enforce expected data for-
mats by implementation of the Validator interface (for instance,
PersonNameValidator, VisitTypeValidator, etc.). For some
of these classes the implementation is strict enough to reject script
tags by enforcing data to match a particular regular expression, e.g.,
PersonNameValidator. However, VisitTypeValidator lacks
such restriction and only checks for object fields to avoid being
null, empty or whitespace, and their lengths to be correct. Thus
the corresponding webpage that receives user inputs to construct
VisitType objects (named VisitTypeForm.jsp) is generally not
able to perform proper sanitization through the invocation of the
validator implemented by VisitTypeValidator. A VisitType

object is then stored in the MySQL database, and could be retrieved
later based on user request. For instance, VisitTypeList.jsp
queries the database for all defined VisitType objects, and sends
VisitType names and descriptions to the client side. Therefore,
the attacker can easily inject scripts as part of VisitType name
and/or description, and the constructed object would be stored in
the database and possibly in a later stage retrieved and executed in
the victim’s client environment.

Integrity taint tracking is a well-recognized solution against these
sorts of attacks. In our example, the tainted VisitType object
would be prevented from retrieval and execution. The addition of
sanitization methods would also be an obvious step, and commen-
surate with an integrity taint analysis approach– sanitized objects
would be endorsed for the purposes of prospective security. How-
ever, many attack scenarios demonstrate degradation of taint track-
ing effectiveness due to unsound or incomplete input sanitization
[25, 15].

To support integrity taint analysis in the presence of incomplete
sanitization for legacy code, we propose a program rewriting ap-
proach, which is applicable to systems such as OpenMRS. Our pro-
gram rewriting algorithm takes as input a heterogeneous (prospec-
tive and retrospective) taint analysis policy specification and input
code, and instruments the code to support the policy. The policy
allows user specification of taint sources, secure sinks, and sanitiz-
ers. A distinct feature of our system is that results of sanitization
are considered “maybe tainted” data, which is allowed to flow into
security sensitive operations but in such cases is entered in a log to
support auditing and accountability.

Our rewriting algorithm is intended to be a pure model of the
Phosphor taint analysis system [3, 4] to track direct information
flow, augmented with endorsement and retrospective security mea-
sures. We are inspired by this system due to its proven efficiency
and general security model allowing any primitive value to be as-
signed an integrity level (rather than just e.g. strings as in other sys-
tems [11, 8]). Foundational correctness of the algorithm is proven
in an idealized model of Phosphor-style taint analysis defined for
a “Featherweight” Java core language [12]. We choose this model
to focus on basic issues related to “pure” object orientation con-
trol and data flow, e.g. method dispatch and propagation through
value (de)construction. Correctness is established in terms of the
faithfulness of the instrumentation to the policy specification.

1.2 The Security Model
The security problem we consider is about the integrity of data

being passed to security sensitive operations (ssos). An important

in OpenMRS (version 2.4, released 7/15/2016, and the preceding
versions) to the OpenMRS developing community. We discuss one
particular case here.

example is a string entered by an untrusted users that is passed to
a database method for parsing and execution as a SQL command.
The security mechanism should guarantee that low-integrity data
cannot be passed to ssos without previous sanitization.

In contrast to standard information flow which is concerned with
both direct (aka explicit) and indirect (aka implicit) flows, taint
analysis is only concerned with direct flow. Direct flows transfer
data directly between variables, e.g. n1 and n2 directly affect the
result of n1 + n2. Indirect flows are realized when data can affect
the result of code dispatch– the standard example is a conditional
expression if v then e1 else e2 where the data v indirectly affects
the valuation of the expression by guarding dispatch. While there
are no primitive conditional expressions in our Java model, indirect
flows are realized via dynamic method dispatch which faithfully
models Java dispatch.

More precisely, we posit that programs p(θ) in this security set-
ting contain a low integrity data source θ, and an arbitrary num-
ber of secure sinks (ssos) and sanitizers which are specified exter-
nally to the program by a security administrator. For simplicity
we assume that ssos are unary operations, so there is no ques-
tion about which argument may be tainted. Since we define a
Java based model, each sso or sanitizer is identified as a specific
method m in a class C. That is, there exists a set of Sanitizers
containing class, method pairs C.m which are assumed to return
high-integrity data, though they may be passed low-integrity data.
Likewise, there exists a set of SSOs of the same form, and for
brevity we will write sso(e) for a method invocation new o.m(e)
on some object o where C.m ∈ SSO . As a sanity condition we
require SSOs ∩ Sanitizers = ∅. For simplicity of our formal
presentation we assume that only one tainted source will exist.

The Threat Model.
We assume that our program rewriting algorithm is trusted. Input

code is trusted to not be malicious, though it may contain errors.
We note that this assumption is important for application of taint
analysis that disregards indirect flows, since there is confidence that
the latter won’t be exploited (even accidentally) as a side-channel
attack vector by non-malicious code. We assume that untrusted
data sources provide low integrity data, though in this work we only
consider tainted “static” values, e.g. strings, not tainted code that
may be run as part of the main program execution. However, the
latter does not preclude hardening against XSS or injection attacks
in practice, if we consider an evaluation method to be an sso.

1.3 Outline of the Paper
In Section 2, we define the basic source language model. In Sec-

tion 3, we introduce a logical specification of dynamic taint analy-
sis with partial endorsement, that can be used to support a uniform
specification of an in-depth (prospective and retrospective) policy.
The main feature of this Section is Definition 3.6 which specifies
the in-depth policy. In Section 4, an implementation of dynamic
integrity taint analysis is defined as a program rewriting algorithm.
This Section also contains an extended example in Section 4.4 il-
lustrating the main ideas of our formulations. In Section 5 the
rewriting algorithm is proven correct on the basis of the in-depth
policy specification. The main results are that rewritten programs
are simulations of the source with integrity flow reflected in the
operational semantics (Theorem 5.1) , and that prospective and ret-
rospective policies are correctly instrumented (Theorems 5.2 and
5.3). We conclude with a discussion of related work in Section 6
and ideas for future work in Section 7.



2. AN OO MODEL FOR INTEGRITY TAINT
ANALYSIS

We begin the technical presentation with definition of our lan-
guage model based on Featherweight Java (FJ) [12]. FJ is a core
calculus that includes class hierarchy definitions, subtyping, dy-
namic dispatch, and other basic features of Java. To this we add
semantics for library methods that allow specification of operations
on base values (such as strings and integers). Consideration of
these features is important for a thorough modeling of Phosphor-
style taint analysis, and important related issues such as string-
vs. character-based taint [8] which have not been considered in
previous formal work on taint analysis [22]. Since static analy-
sis is not a topic of this paper, for brevity we omit the standard FJ
type analysis which is described in [12].

2.1 Syntax
The syntax of FJ is defined below. We let A, B, C, D range over

class names, x range over variables, f range over field names, and
m range over method names. Values, denoted v or u, are objects,
i.e. expressions of the form new C(v1, . . . , vn). We assume given
an Object value that has no fields or methods. In addition to the
standard expressions of FJ, we introduce a new form C.m(e). This
form is used to identify the method C.m associated with a current
evaluation context (aka the “activation frame”). This does not really
change the semantics, but is a useful feature for our specification of
sanitizer endorsement since return values from sanitizers need to
be endorsed– see the Invoke and Return rules in the operational
semantics below for its usage.

L ::= class C extends C {C̄ f̄; K M̄}

K ::= C(C̄ f̄){super(f̄); this.f̄ = f̄; }

M ::= C m(C̄ x̄){return e; }

e ::= x | e.f | e.m(ē) | new C(ē) | C.m(e)

E ::= [ ] | E.f | E.m(ē) | v.m(v̄, E, ē′) | new C(v̄, E, ē′) | C.m(E)

For brevity in this syntax, we use vector notations. Specifically
we write f̄ to denote the sequence f1, . . . , fn, similarly for C̄, m̄,
x̄, ē, etc., and we write M̄ as shorthand for M1 · · · Mn. We write the
empty sequence as ∅, we use a comma as a sequence concatenation
operator. If and only if m is one of the names in m̄, we write m ∈ m̄.
Vector notation is also used to abbreviate sequences of declarations;
we let C̄ f̄ and C̄ f̄; denote C1 f1, . . . , Cn fn and C1 f1; . . . ; Cn fn;
respectively. The notation this.f̄ = f̄; abbreviates this.f1 =
f1; . . . ; this.fn = fn;. Sequences of names and declarations are
assumed to contain no duplicate names.

2.2 Semantics
The semantic definition has several components, in addition to

evaluation rules.

2.2.1 The class table and field and method body lookup
The class table CT maintains class definitions. The manner in

which we look up field and method definitions implements inheri-
tance and override, which allows fields and methods to be redefined
in subclasses. We assume a given class tableCT during evaluation,
which will be clear from context.

fieldsCT (Object) = ∅

CT (C) = class C extends D {C̄ f̄; K M̄}
fieldsCT (D) = D̄ ḡ

fieldsCT (C) = D̄ ḡ, C̄ f̄

CT (C) = class C extends D {C̄ f̄; K M̄}
B m(B̄ x̄){return e; } ∈ M̄

mbodyCT (m, C) = x̄, e

CT (C) = class C extends D {C̄ f̄; K M̄} m 6∈ M̄

mbodyCT (m, C) = mbodyCT (m, D)

2.2.2 Method type lookup
Just as we’ve defined a function for looking up method bodies in

the class table, we also define a function that will look up method
types in a class table. Although we omit FJ type analysis from this
presentation, method type lookup will be useful for taint analysis
instrumentation (Definition 4.1).

class C extends D {C̄ f̄; K M̄} B m(B̄ x̄){return e; } ∈ M̄

mtypeCT (m, C) = B̄→ B

class C extends D {C̄ f̄; K M̄} m 6∈ M̄

mtypeCT (m, C) = mtypeCT (m, D)

2.2.3 Operational semantics
Now, we can define the operational semantics of FJ. We define

these as a small step relation in the usual manner.

Context
e→ e

′

E[e]→ E[e′]

Field
fieldsCT (C) = C̄ f̄ fi ∈ f̄

new C(v̄).fi → vi

Invoke
mbodyCT (m, C) = x̄, e

new C(v̄).m(ū)→ C.m(e[new C(v̄)/this][ū/x̄])

Return
C.m(v)→ v

We use→∗ to denote the reflexive, transitive closure of→. We
will also use the notion of an execution trace τ to represent a series
of configurations κ, where τ = κ1 . . . κn means that κi → κi+1

for 0 < i < n. In the case of FJ, configurations κ are just expres-
sions e. Note that an execution trace τ may represent the partial
execution of a program, i.e. the trace τ may be extended with addi-
tional configurations as the program continues execution. We use
metavariables τ and σ to range over traces.

To denote execution of top-level programs p(θ) where θ is an
object of low integrity, we assume that all class tables CT include
an entry point TopLevel.main, where TopLevel objects have no
fields. We define p(θ) = new TopLevel().main(θ), and we write
p(θ) ⇓ τ iff trace τ begins with the configuration p(θ).

2.3 Library Methods
The abstract calculus described above is not particularly inter-

esting with respect to direct information flow and integrity prop-
agation, especially since method dispatch is considered an indi-
rect flow. More interesting is the manner in which taint propagates
through primitive values and library operations on them, especially
strings and string operations. This is because direct flows should
propagate through some of these methods. Also, for run-time effi-
ciency and ease of coding some Java taint analysis tools treat even



complex library methods as “black boxes” that are instrumented at
the top level for efficiency [11], rather than relying on instrumenta-
tion of lower-level operations.

Note that treating library methods as “black boxes” introduces a
potential for over- and under-tainting– for example in some systems
all string library methods that return strings are instrumented to
return tainted results if any of the arguments are tainted, regardless
of any direct flow from the argument to result [11]. Clearly this
strategy introduces a potential for over-taint. Other systems do not
propagate taint from strings to their component characters when
decomposed [8], which is an example of under-taint. Part of our
goal here is to develop an adequate language model to consider
these approaches.

We therefore extend our basic definitions to accommodate prim-
itive values and their manipulation. Let a primitive field be a field
containing a primitive value. We call a primitive object/class any
object/class with primitive fields only, and a library method is any
method that operates on primitive objects, defined in a primitive
class. We expect primitive objects to be object wrappers for prim-
itive values (e.g., Int(5) wrapping primitive value 5), and library
methods to be object-oriented wrappers over primitive operations
(e.g., Int plus(Int) wrapping primitive operation +), allowing
the latter’s embedding in FJ. As a sanity condition we only allow
library methods to select primitive fields or perform primitive op-
erations. Let LibMeths be the set of library method names paired
with their corresponding primitive class names.

We posit a special set of field names PrimField that access
primitive values ranged over by ν that may occur in objects, and
a set of operations ranged over by Op that operate on primitive
values. We require that special field name selections only occur
as arguments to Op, which can easily be enforced in practice by
a static analysis. Similarly, primitive values ν may only occur in
special object fields and be manipulated there by any Op.

f∗ ∈ PrimField
e ::= ν | e.f∗
e ::= · · · | Op(ē)
v ::= new C(v̄) | ν
E ::= · · · | Op(ν̄, E, ē)

For library methods we require that the body of any library method
be of the form where C is a primitive class:

return new C(ē1, . . . , ēn)

We define the meaning of operations Op via an “immediate” big-
step semantic relation ≈ where the rhs of the relation is required
to be a primitive value, and we identify expressions up to ≈. For
example, to define a library method for integer addition, where Int
objects contain a primitive numeric val, field we would define a +
operation as follows:

+(n1, n2) ≈ n1 + n2

Then we can add to the definition of Int in CT a method Plus to
support arithmetic in programs:

Int plus(Int x) { return(new(Int)(+(this.val, x.val))); }

Similarly, to define string concatenation, we define a concatenation
operation @ on primitive strings:

@(s1, s2) ≈ s1s2

and we extend the definition of String in CT with the following
method, where we assume all String objects maintain their prim-

itive representation in a val field:

String concat(String x)
{ return(new(String)(@(this.val, x.val))); }

3. IN-DEPTH INTEGRITY ANALYSIS SPEC-
IFIED LOGICALLY

In this Section we demonstrate how in-depth integrity direct taint
analysis for FJ can be expressed as a single uniform policy separate
from code. To accomplish this we interpret program traces as in-
formation represented by a logical fact base in the style of Datalog.
We then define a predicate called Shadow that inductively con-
structs a “shadow” expression that reflects the proper taint for all
data in a configuration at any point in a trace.

An important feature of Java based taint analyses is that they tend
to be object based, i.e. each object has an assigned taint level. In our
model, a shadow expression has a syntactic structure that matches
up with the configuration expression, and associates integrity levels
(including “high” ◦ and “low” •) with particular objects via shape
conformance.

EXAMPLE 3.1. Suppose a method m of an untainted C object
with no fields is invoked on a pair of tainted s1 and untainted s2
strings: new C().m(new String(s1), new String(s2)). The proper
shadow is:

shadow C(◦).m(shadow String(•), shadow String(◦)).

On the basis of shadow expressions that correctly track integrity,
we can logically specify prospective taint analysis as a property of
shadowed trace information, and retrospective taint analysis as a
function of shadowed trace information. An extended example of a
shadowed trace is presented in a later Section (4.4).

3.1 Traces and Logs as Information
Leveraging theory developed in previous work [1], we interpret

traces and audit logs as elements in an information algebra [13]
to support uniform policy specification and semantics for dynamic
integrity taint analysis.

An information algebra contains information elements X (e.g. a
set of logical assertions) taken from a set Φ (the algebra). A par-
tial ordering is induced on Φ by the so-called information ordering
relation ≤, where intuitively for X,Y ∈ Φ we have X ≤ Y iff
Y contains at least as much information as X , though its precise
meaning depends on the particular algebra. We say that X and Y
are information equivalent, and write X = Y , iff X ≤ Y and
Y ≤ X . We assume given a function b·c that is an injective map-
ping from traces to Φ. This mapping interprets a given trace as
information, where the injective requirement ensures that informa-
tion is not lost in the interpretation. For example, if σ is a proper
prefix of τ and thus contains strictly less information, then formally
bσc ≤ bτc.

It is well known that safety properties such as prospective taint
analysis can be described as sets of traces [20]. An information
algebra formulation also supports a specification and semantics of
retrospective policies [1]. Specifically, we let LS range over log-
ging specifications, which are functions from traces to Φ. Intu-
itively, LS(τ) denotes the information that should be recorded in
an audit log during the execution of τ given specification LS . This
is the semantics of the logging specification LS . Assuming also
an interpretation of logs b·c as a function from logs L to informa-
tion elements, this formulation establishes correctness conditions
for audit logs as follows.



DEFINITION 3.1. Audit log L is sound with respect to logging
specification LS and execution trace τ iff bLc ≤ LS(τ). Similarly,
audit log L is complete with respect to logging specification LS
and execution trace τ iff LS(τ) ≤ bLc.

3.1.1 FOL as an Information Algebra
To define direct information integrity flow as a property of FJ

traces, we use safe Horn clause logic (aka Datalog) extended with
constructors as terms [6, 17], in keeping with our previous work
on specification of retrospective policies [1]. In that work, we have
demonstrated that this variant of first order logic (FOL) is an in-
stance of information algebra [1].

Formally, we let Greek letters φ and ψ range over FOL formulas
over terms T that include variables, constants and compound terms,
and let capital lettersX,Y, Z range over sets of formulas. We posit
a sound and complete proof theory supporting judgements of the
form X ` φ. In this text we assume without loss of generality a
natural deduction proof theory. The closure of a set of formulas X
is the set of formulas that are logically entailed by X .

DEFINITION 3.2. We define a closure operation C, and a set
ΦFOL of closed sets of formulas:

C(X) = {φ | X ` φ} ΦFOL = {X | C(X) = X}

Note in particular that C(∅) is the set of logical tautologies.

Let Preds be the set of all predicate symbols, and let S ⊆ Preds
be a set of predicate symbols. We define sublanguage LS to be
the set of well-formed formulas over predicate symbols in S (in-
cluding boolean atoms true and false, and closed under the usual
first-order connectives and binders). We will use sublanguages to
define refinement operations in our information algebra. Subset
containment induces a lattice structure, denoted S, on the set of all
sublanguages, with F = LPreds as the top element.

Now we can define focusing and combination operators, which
are the fundamental operators of an information algebra. Focus-
ing isolates the component of a closed set of formulas that is in a
given sublanguage. Combination closes the union of closed sets
of formulas. Intuitively, the focus of a closed set of formulas X
to sublanguage L is the refinement of the information in X to the
formulas in L. The combination of closed sets of formulas X and
Y combines the information of each set.

DEFINITION 3.3. Define:

1. Focusing: X⇒S = C(X ∩ LS) where X ∈ ΦFOL, S ⊆
Preds

2. Combination: X ⊗ Y = C(X ∪ Y ) where X,Y ∈ ΦFOL

Properties of the algebra ensure that≤ is a partial ordering by defin-
ing X ≤ Y iff X ⊗ Y = Y , which in the case of our logical
formulation means that for all X,Y ∈ ΦFOL we have X ≤ Y iff
X ⊆ Y , i.e. ≤ is subset inclusion over closed sets of formulas.

3.2 Taint Tracking as a Logical Trace Prop-
erty

We develop a mapping toFOL(·) that interprets FJ traces as sets
of logical facts (a fact base), and define b·c = C(toFOL(·)). In-
tuitively, in the interpretation each configuration is represented by
a Context predicate representing the evaluation context, and pred-
icates (e.g. Call) representing redexes. Each of these predicates
have an initial natural number argument denoting a “timestamp”,
reflecting the ordering of configurations in a trace.

toFOL(v, n) = {Value(n, v)},
toFOL(E[new C(v̄).f], n) = {GetField(n, new C(v̄), f),

Context(n, E)},
toFOL(E[new C(v̄).m(ū)], n) = {Call(n, C, v̄, m, ū),Context(n, E)},
toFOL(E[C.m(v)], n) = {ReturnValue(n, C, m, v),Context(n, E)},
toFOL(E[Op(ν̄)], n) = {PrimCall(n,Op, ν̄),Context(n, E)}.

Figure 1: Definition of toFOL(·) for configurations.

match(sv , [ ], sv).

match(shadow C(t, sv).fi, [ ], shadow C(t, sv).fi).

match(shadow C(t, sv).m(su), [ ], shadow C(t, sv).m(su)).

match(C.m(sv), [ ], C.m(sv)).

match(se,SE , se′) =⇒ match(se.f,SE .f, se′).

match(se,SE , se′) =⇒ match(se.m(se),SE .m(se), se′).

match(se,SE , se′) =⇒
match(sv .m(sv , se, se), sv .m(sv ,SE , se), se′).

match(se,SE , se′) =⇒
match(shadow C(t, sv , se, se), shadow C(t, sv ,SE , se), se′).

match(se,SE , se′) =⇒ match(C.m(se), C.m(SE), se′).

match(se,SE , se′) =⇒ match(Op(s̄v , se, s̄e),Op(s̄v ,SE , s̄e), se′).

Figure 2: match predicate definition.

DEFINITION 3.4. We define toFOL(·) as a mapping on traces
and configurations:

toFOL(τ) =
⋃

σ∈prefix(τ)

toFOL(σ)

such that toFOL(σ) =
⋃
i toFOL(κi, i) for σ = κ1 · · ·κk. We

define toFOL(κ, n) as in Figure 1.

3.2.1 Integrity Identifiers
We introduce an integrity identifier t that denotes the integrity

level associate with objects. To support a notion of “partial en-
dorsement” for partially trusted sanitizers, we define three taint la-
bels, to denote high integrity (◦), low integrity (•), and questionable
integrity (�).

t ::= ◦ | � | •

We specify an ordering ≤ on these labels denoting their integrity
relation:

• ≤ � ≤ ◦

For simplicity in this presentation we will assume that all Sanitizers
are partially trusted and cannot raise the integrity of a tainted or
maybe tainted object beyond maybe tainted. It would be possible
to include both trusted and untrusted sanitizers without changing
the formalism.

We posit the usual meet ∧ and join ∨ operations on taint lattice
elements, and introduce logical predicates meet and join such that
meet(t1 ∧ t2, t1, t2) and join(t1 ∨ t2, t1, t2) hold.

3.2.2 Shadow Traces, Taint Propagation, and Sani-
tization



Shadow traces reflect taint information of objects as they are
passed around programs. Shadow traces manipulate shadow terms
and context, which are terms T in the logic with the following syn-
tax. Note the structural conformance with closed e and E, but with
primitive values replaced with a single dummy value δ that is omit-
ted for brevity in examples, but is necessary to maintain proper ar-
ity for field selection. Shadow expressions most importantly assign
integrity identifiers t to objects:

sv ::= shadow C(t, s̄v) | δ
se ::= sv | se.f | se.m(s̄e) | shadow C(t, s̄e) | C.m(se) |

Op(s̄e)

SE ::= [ ] | SE .f | SE .m(s̄e) | sv .m(s̄v ,SE , s̄e ′) |
shadow C(t , s̄v ,SE , s̄e ′) | C.m(SE) |
Op(s̄v ,SE , s̄e)

The shadowing specification requires that shadow expressions evolve
in a shape-conformant way with the original configuration. To this
end, we define a metatheoretic function for shadow method bodies,
smbody , that imposes untainted tags on all method bodies, defined
a priori, and removes primitive values.

DEFINITION 3.5. Shadow method bodies are defined by the func-
tion smbody .

smbodyCT (m, C) = x̄.srewrite(e),

where mbodyCT (m, C) = x̄.e and the shadow rewriting function,
srewrite , is defined as follows, where srewrite(ē) denotes a map-
ping of srewrite over the vector ē:

srewrite(x) = x

srewrite(new C(ē)) = shadow C(◦, srewrite(e))

srewrite(e.f) = srewrite(e).f

srewrite(e.m(ē′)) = srewrite(e).m(srewrite(ē′))

srewrite(C.m(e)) = C.m(srewrite(e))

srewrite(Op(ē)) = Op(srewrite(ē))

srewrite(ν) = δ

We use match as a predicate which matches a shadow expres-
sion se , to a shadow context SE and a shadow expression se ′ where
se ′ is the part of the shadow in the hole. The definition of match
is given in Figure 2.

Next, in Figure 3, we define a predicate Shadow(n, se) where
se is the relevant shadow expression at execution step n, estab-
lishing an ordering for the shadow trace. Shadow has as its pre-
condition a “current” shadow expression, and as its postcondition
the shadow expression for the next step of evaluation (with the ex-
ception of the rule for shadowing Ops on primitive values which
reflects the “immediate” valuation due to the definition of ≈– note
the timestamp is not incremented in the postcondition in that case).
We set the shadow of the initial configuration at timestamp 1, and
then Shadow inductively shadows the full trace. Shadow is de-
fined by case analysis on the structure of shadow expression in the
hole. The shadow expression in the hole and the shadow evaluation
context are derived from match predicate definition.2

Note especially how integrity is treated by sanitization and en-
dorsement in this specification. For elements of Sanitizers , if
input is tainted then the result is considered to be only partially
endorsed. For library methods, taint is propagated given a user-
defined predicate Prop(t, T ) where T is a compound term of the
2Some notational liberties are taken in Figure 3 regarding expres-
sion and context substitutions, which are defined using predicates
elided for brevity.

form C.m(t̄) with t̄ the given integrity of this followed by the in-
tegrity of the arguments to method C.m, and t is the integrity of the
result. For example, one could define:

meet(t, t1, t2)⇒ Prop(t, Int.plus(t1, t2))

3.3 In-Depth Integrity Taint Analysis Policies
We define our in-depth policy for integrity taint analysis. The

prospective component blocks the execution of the program when-
ever a tainted value is passed to a secure method. To this end, in
Figure 4 we define the predicate BAD which identifies traces that
should be rejected as unsafe. The retrospective component specifies
that data of questionable integrity that is passed to a secure method
should be logged. The relevant logging specification is specified in
terms of a predicate MaybeBad also defined in Figure 4.

DEFINITION 3.6. LetX be the set of rules in Figures 2, 3, and 4
and the set of user defined rules for Prop. The prospective integrity
taint analysis policy is defined as the set of traces that do not end
in BAD states.

SPtaint = {τ | (bτc ⊗ C(X))⇒{BAD} = C(∅)}.

The retrospective integrity taint analysis policy is the following log-
ging specification:

LS taint = λτ.(bτc ⊗ C(X))⇒{MaybeBAD}

We define a program as being safe iff it does not produce a bad
trace.

DEFINITION 3.7. We call a program p(θ) safe iff for all τ it is
the case that p(θ) ⇓ τ implies τ ∈ SPtaint. We call the program
unsafe iff there exists some trace τ such that p(θ) ⇓ τ and τ /∈
SPtaint.

4. TAINT ANALYSIS INSTRUMENTATION
VIA PROGRAM REWRITING

Now we define an object based dynamic integrity taint analysis
in a more familiar operational style. Taint analysis instrumenta-
tion is added automatically by a program rewriting algorithm R
that models the Phosphor rewriting algorithm. It adds taint label
fields to all objects, and operations for appropriately propagating
taint along direct flow paths. In addition to blocking behavior to
enforce prospective checks, we incorporate logging instrumenta-
tion to support retrospective measures in the presence of partially
trusted sanitization.

4.1 In-Depth Taint Analysis Instrumentation
The target language of the rewriting algorithmR, called FJtaint,

is the same as FJ, except we add taint labels t as a form of primitive
value ν, the type of which we posit as Taint. For the semantics of
taint values operations we define:

∨(t1, t2) ≈ t1 ∨ t2 ∧ (t1, t2) ≈ t1 ∧ t2

In addition we introduce a “check” operation ? such that ?t ≈ t iff
t > •. We also add an explicit sequencing operation of the form
e; e to target language expressions, and evaluation contexts of the
form E; e. along with the appropriate operational semantics rule
that we define below in Section 4.3.

Now we define the program rewriting algorithm R as follows.
Since in our security model the only tainted input source is a spec-
ified argument to a top-level program, the rewriting algorithm adds
an untainted label to all objects. The class table is then manipulated
to specify a taint field for all objects, a check object method that



Shadow(1, shadow TopLevel(◦).main(shadow C(•, δ̄))).
Shadow(n, se) ∧match(se,SE , sv .m(sv ′)) ∧ C.m /∈ LibMeths ∧ smbodyCT (m, C) = x̄.se′ =⇒

Shadow(n+ 1,SE [C.m(se′[sv ′/x̄][sv/this])]).

Shadow(n, se) ∧match(se,SE , shadow C(t0, sv).m(shadow C(t , sv))) ∧ C.m ∈ LibMeths ∧ smbodyCT (m, C) = x̄.shadow D(◦, se)∧

Prop(t, C.m(t0, t̄)) =⇒ Shadow(n+ 1,SE [C.m(shadow D(t, se)[shadow C(t0, sv)/this][shadow C(t , sv))/x̄])]).

Shadow(n, se) ∧match(se,SE , shadow C(t, sv).fi) =⇒ Shadow(n+ 1,SE [sv i]).

Shadow(n, se) ∧match(se,SE ,Op(δ̄)) =⇒ Shadow(n,SE [δ]).

Shadow(n, se) ∧match(se,SE , C.m(shadow D(t, sv))) ∧ C.m ∈ Sanitizers =⇒ Shadow(n+ 1,SE [shadow D(t ∨�, sv)]).

Shadow(n, se) ∧match(se,SE , C.m(sv)) ∧ C.m /∈ Sanitizers =⇒ Shadow(n+ 1,SE [sv ]).

Figure 3: Shadow predicate definition.

match(se,SE , shadow C(t, sv).m(shadow D(t′, sv ′)) ∧ Shadow(n, se) ∧ Call(n, C, v̄, m, u) ∧ C.m ∈ SSOs =⇒ SsoTaint(n, t′, u).

SsoTaint(n, •, u) =⇒ BAD(n). SsoTaint(n, t, u) ∧ t ≤ � =⇒ MaybeBAD(u).

Figure 4: Predicates for Specifying Prospective and Retrospective Properties

blocks if the argument is tainted, an endorse method for any ob-
ject class returned by a sanitizer, and modification of all sanitizers
to endorse their return value.

As discussed in Section 1, sanitization is typically taken to be
“ideal” for integrity flow analyses, however in practice sanitization
is imperfect, which creates an attack vector. To support retrospec-
tive measures specified in Definition 3.6, we define endorse so it
takes object taint t to the join of t and �. The algorithm also adds a
log method call to the beginning of SSOs , which will log objects
that are maybe tainted or worse. The semantics of log are defined
directly in the operational semantics of FJtaint below.

DEFINITION 4.1. For any expression e, the expression µ(e)
is syntactically equivalent to e except with every subexpression
new C(ē) replaced with new C(◦, ē). Given SSOs and Sanitizers ,
defineR(e, CT ) = (µ(e),R(CT )), whereR(CT ) is the smallest
class table satisfying the axioms given in Figure 5.

4.2 Taint Propagation of Library Methods
Another important element of taint analysis is instrumentation

of library methods that propagate taint– the propagation must be
made explicit to reflect the interference of arguments with results.
The approach to this in taint analysis systems is often motivated
by efficiency as much as correctness [11]. We assume that library
methods are instrumented to propagate taint as intended (i.e. in ac-
cordance with the user defined predicate Prop).

Here is how addition and string concatenation, for example, can
be modified to propagate taint. Note the taint of arguments will
be propagated to results by taking the meet of argument taint, thus
reflecting the degree of integrity corruption:

Int plus(Int x)
{ return(new(Int)

(∧(this.taint, x.taint),+(this.val, x.val))); }

String concat(Int x)
{ return(new(String)
∧(this.taint, x.taint),@(this.val, x.val))); }

4.3 Operational Semantics of FJtaint
To support the semantics of log, we add an audit log L as a new

configuration component in FJtaint that stores objects of question-
able integrity. The log method is the only one that interacts with
the log in any way. We “inherit” the reduction semantics of FJ, and
add a rule also for evaluation of sequencing.

Reduce
e→ e

′

e,L→ e
′,L

Sequence
v; e→ e

Log
t ≤ �

u.log(new C(t, v̄)),L→ new C(t, v̄), (L, new C(t, v̄))

NoLog
t > �

u.log(new C(t, v̄)),L→ new C(t, v̄),L

As for FJ we use→∗ to denote the reflexive, transitive closure on
→ over FJtaint configurations of the form e,L. We define FJtaint
configurations and traces as for FJ. Abusing notation, we write
R(p(θ)) ⇓ τ iff τ begins with the configuration R(p(θ)),∅, and
also κ ⇓ τ iff τ is a valid trace in the FJtaint semantics beginning
with κ.

4.4 An Illustrative Example
To illustrate the major points of our construction for source pro-

gram traces and their shadows, as well as the corresponding traces
of rewritten programs, we consider an example of program that
contains an sso call on a string that has been constructed from a
sanitized low integrity input.

EXAMPLE 4.1. Let

mbodyCT (main, TopLevel) =

x, new Sec().secureMeth(new Sec().sanitize(x.concat(

new String(′′world′′))).

Assume the string ′′hello ′′ is tainted with low integrity. Figure 6
gives the source trace, the shadow expressions derived based on the
rules given in Figure 3, and the target trace. For the sake of brevity
and clarity in illustrating the main ideas, we have assumed that



fieldsR(CT )(Object) = Taint taint mbodyR(CT )(check, Object) = x, new Object(?x.taint)

C.m ∈ Sanitizers mtypeCT (m, C) = C̄→ D fieldsCT (D) = f̄

mbodyR(CT )(endorse, D) = ∅, new D(∨(�, this.taint), this.f)

C.m ∈ SSOs mbodyCT (m, C) = x, e

mbodyR(CT )(m, C) = x, this.log(x); this.check(x);µ(e)

C.m 6∈ Sanitizers ∪ SSOs mbodyCT (m, C) = x̄, e

mbodyR(CT )(m, C) = x̄, µ(e)

C.m ∈ Sanitizers mbodyCT (m, C) = x̄, e

mbodyR(CT )(_m, C) = x̄, µ(e)

C.m ∈ Sanitizers mbodyCT (m, C) = x̄, e

mbodyR(CT )(m, C) = x̄, this._m(x̄).endorse()

Figure 5: Axioms for Rewriting Algorithm

methods Sec.sanitize and Sec.secureMeth are identity func-
tions. Some reduction steps are elided in the example as n-length
multi-step reductions →n. All reductions are provided in a com-
plete version of the example in the Appendix (Example A.1).

5. CORRECTNESS OF PROGRAM REWRIT-
ING

The logical definition of in-depth integrity taint analysis pre-
sented in Section 3 establishes the proper specification of prospec-
tive and retrospective analysis. In this section we show how these
definitions are used to establish correctness conditions for R, and
how correctness is proven. The main properties defined in this Sec-
tion establish correctness for prospective and retrospective mea-
sures in Definitions 5.3 and 5.5 respectively, and the main results
demonstrate that these properties are enjoyed by R in Theorems
5.2 and 5.3.

5.1 Semantics Preservation
A core condition for correctness ofR is proof of semantics preser-

vation for safe programs in FJ, i.e. that rewritten programs simulate
the semantics of source program modulo security instrumentations.
The way this simulation is defined will naturally imply a full and
faithful implementation of taint shadowing semantics. Adapting
the Definition in [1], we say that rewriting algorithm R is seman-
tics preserving for SPtaint iff there exists a relation :≈ with the
following property.

DEFINITION 5.1. Rewriting algorithmR is semantics preserv-
ing iff for all safe programs p(θ) (Definition 3.7) all of the following
hold:

1. For all traces τ such that p(θ) ⇓ τ there exists τ ′ with τ :≈
τ ′ andR(p(θ)) ⇓ τ ′.

2. For all traces τ such thatR(p(θ)) ⇓ τ there exists a trace τ ′

such that τ ′ :≈ τ and p(θ) ⇓ τ ′.

Observe that :≈ may relate more than one trace in the target pro-
gram to a trace in the source program, since instrumentation in the
target language may introduce new reduction steps that can cause
“stuttering” with respect to source language traces.

As evidenced in the statement of semantics preservation, we will
generally relate “executable” source programs p(θ) with rewritten
programsR(p(θ)) for simplicity in the statement of properties and
ease of proofs. However, for practical purposes it is important to
observe that instrumentation can be performed on program entry
points p and class tables CT once, prior to invocation on possibly
tainted θ, due to the following property which follows immediately
from the definition ofR.

LEMMA 5.1. R(p(θ)) = R(p)(R(θ))

5.2 Correctness for Prospective Analysis
Proof of semantics preservation establishes correctness for the

prospective component of R, since SPtaint expresses the correct
prospective specification as a safety property. To this end, we define
the notion of security failure.

DEFINITION 5.2. An FJtaint program e causes a security fail-
ure iff e,∅→∗ E[v.check(new C(•, v̄))],L for some E, v, new C(•, v̄),
and L.

The correctness of prospective component of rewriting algorithm
is then defined as follows:

DEFINITION 5.3. We call rewriting algorithm R prospectively
correct provided that a program p(θ) is unsafe (Definition 3.7) iff
R(p(θ)) causes a security failure (Definition 5.2).

5.3 Correctness for Retrospective Analysis
In addition to preserving program semantics, a correctly rewrit-

ten program constructs a log in accordance with the given logging
specification. More precisely, if LS is a given logging specifica-
tion and a trace τ describes execution of a source program, rewrit-
ing should produce a program with a trace τ ′ that corresponds to τ
(i.e., τ :≈ τ ′), where the log L generated by τ ′, written τ ′ ; L,
ideally contains the same information as LS(τ). A minor technical
issue is that instrumentation imposed by R requires that informa-
tion is added to the log after an sso invocation with an argument
of at most questionable integrity, and :≈ accounts for this stutter-
ing. In our trace based correctness condition we need to account
for this, hence the following Definition:

DEFINITION 5.4. For FJtaint programs we write τ ; L iff
tail(σ) = e,L where σ is the longest trace such that τ ′ :≈ τ
and τ ′ :≈ σ for some FJ trace τ ′.

The following definitions then establish correctness conditions
for rewriting algorithms. Note that satisfaction of either of these
conditions only implies condition (1) of Definition 5.1, not con-
dition (2), so semantics preservation is an independent condition.
We define toFOL(L) = {MaybeBAD(v) | v ∈ L}, and thus
bLc = C(toFOL(L)).

DEFINITION 5.5. Rewriting algorithmR is retrospectively sound/-
complete iff for all programs R(p(θ)), and finite traces τ and σ
where:

R(p(θ)) ⇓ σ τ :≈ σ σ ; L

we have that L is sound/complete with respect to LS taint and τ .



p(new String(′′hello ′′))→5 TopLevel.main(new Sec().secureMeth(new Sec().sanitize(new String(′′hello world′′))))

→2 TopLevel.main(new Sec().secureMeth(new String(′′hello world′′)))→3 new String(′′hello world′′).

Shadow(1, shadow TopLevel(◦).main(shadow String(•)))

Shadow(6, TopLevel.main(shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(shadow String(•)))))

Shadow(8, TopLevel.main(shadow Sec(◦).secureMeth(shadow String(�)))) Shadow(11, shadow String(�))

R(p(new String(′′hello ′′))),∅→5 TopLevel.main(new Sec(◦).secureMeth(new Sec(◦).sanitize(new String(•, ′′hello world′′)))),∅
→ TopLevel.main(new Sec(◦).secureMeth(Sec.sanitize(new Sec(◦)._sanitize(new String(•, ′′hello world′′)).endorse()))),∅

→3 TopLevel.main(new Sec(◦).secureMeth(new String(�, ′′hello world′′))),∅
→ TopLevel.main(Sec.secureMeth(new Sec(◦).log(new String(�, ′′hello world′′)); new Sec(◦).check(new String(�, ′′hello world′′));

new String(�, ′′hello world′′))),∅→4 new String(�, ′′hello world′′), {new String(�, ′′hello world′′)}

Figure 6: Example 4.1: Source trace, shadow expressions and target trace

overlay(x, x) = x overlay(ν, δ) = ν

overlay(Op(ē),Op(se)) = Op(overlay(e, se))

overlay(e.f, se.f) = overlay(e, se).f

overlay(new C(ē), shadow C(t, se)) = new C(t, overlay(e, se))

overlay(C.m(e), C.m(se)) = C.m(overlay(e, se))

overlay(e.m(ē′), se.m(se′)) = overlay(e, se).m(overlay(e′, se′))

Figure 7: Definition of overlay .

5.4 Definition of :≈ and Correctness Results
To establish correctness of program rewriting, we need to define

a correspondence relation :≈. Source language execution traces
and target language execution traces correspond if they represent
the same expression evaluated to the same point. We make two spe-
cial cases: when the source execution is about to return a value from
a sanitization method that the target execution will endorse first,
and the other case is where a sink method is called in the source
execution, in which the target execution needs to first check the ar-
guments to the sink method in order to log and enforce prospective
policy by check. In these cases, the target execution may be ahead
by some number of steps, allowing time to enforce heterogeneous
policies.

In order to define the correspondence between execution traces
of the source and target language, we first define a mapping, overlay ,
that computes the target configuration by overlaying the source
configuration with its shadow.

DEFINITION 5.6. The mapping overlay : (e, se) 7→ e′ is de-
fined in Figure 7.

We define a way to obtain the last shadow in a trace. Give a
source trace τ of length n, LastShadow(τ) denotes the shadow
of the last configuration in the trace τ . Considering the rule

Shadow(n, se) =⇒ LShadow(se), (1)

trim(x) = x trim(e.f) = trim(e).f

trim(new C(ē)) = new C(trim(e)) trim(C.m(e)) = C.m(trim(e))

trim(Op(ē)) = Op(trim(e))

trim(e1; e2) = trim(e1); trim(e2) trim(e.m(ē′)) =
trim(e) if m = endorse

ε if m ∈ {log, check}
trim(e).m(trim(e′)) if m /∈ {log, check, endorse}

Figure 8: Definition of trim .

we defineLastShadow(τ) = se such that bτc⊗X ` LShadow(se),
where X contains the rules given in Figure 2, Figure 3 and (1).
We need to show that LastShadow is total function on non-trivial
traces, i.e., LastShadow uniquely maps any non-empty trace to a
shadow expression.

LEMMA 5.2. LastShadow is total function on non-trivial traces.

PROOF. By induction on the length of traces and the fact that
shadow expressions are defined uniquely for every step of reduction
in Figure 3. ut

We also define a mapping, trim , from the expressions of the tar-
get language to the expressions of the source language. Intuitively,
trim removes the invocations to check, log and endorse.

DEFINITION 5.7. The mapping trim : e 7→ e′ is defined in
Figure 8. We assume ε to be no-op, i.e., ε; e = e.

DEFINITION 5.8. Given source language execution trace τ =
σκ and target language execution trace τ ′ = σ′κ′, τ :≈ τ ′ iff
overlay(κ, LastShadow(τ)) = trim(e′), where κ′ = e′,L.

Theorem 5.1 establishes semantics preservation for rewriting al-
gorithm R. Moreover, Theorem 5.2 and Theorem 5.3 establish
prospective and retrospective correctness ofR respectively. Proofs
for these theorems are given in Section B.



THEOREM 5.1. The rewriting algorithm R is semantics pre-
serving (Definition 5.1).

THEOREM 5.2. The rewriting algorithmR is prospectively cor-
rect (Definition 5.3).

THEOREM 5.3. The rewriting algorithm R is retrospectively
sound and complete (Definition 5.5).

6. RELATED WORK
Taint analysis is an established solution to enforce confidential-

ity and integrity policies through direct data flow control. Various
systems have been proposed for both low and high level level lan-
guages. Our policy language and semantics are based on a well-
developed formal foundation explored in previous work [1], where
we interpret Horn clause logic as an instance of information algebra
[13] in order to specify and interpret retrospective policies.

Schwartz et al. [22] define a general model for runtime enforce-
ment of policies using taint tracking for an intermediate language.
In Livshits [14], taint analysis is expressed as part of operational
semantics, similar to Schwartz et al. [22], and a taxonomy of taint
tracking is defined. Livshits et al. [15] propose a solution for a
range of vulnerabilities regarding Java-based web applications, in-
cluding SQL injections, XSS attacks and parameter tampering, and
formalize taint propagation including sanitization. The work uses
PQL [16] to specify vulnerabilities. However, these works are fo-
cused on operational definitions of taint analysis for imperative lan-
guages. In contrast we have developed a logical specification of
taint analysis for a functional OO language model that is separate
from code, and is used to establish correctness of an implementa-
tion. Our work also comprises a unique retrospective component to
protect against incomplete input sanitization. According to earlier
studies [25, 15], incomplete input sanitization makes a variety of
applications susceptible to injection attacks.

In other work on taint analysis foundations, Schoepe et al. [21]
have recently proposed a knowledge-based semantic notion for cor-
rectness of explicit information flow analysis, influenced by Vol-
pano’s weak secrecy [24] and gradual release [2]. This work aims
to develop a security hyperproperty, related to noninterference, that
is enforced by taint analysis. However, this work is focused on con-
fidentiality taint analysis in low level memory based languages. A
similar property for integrity taint analysis in our language setting
is a compelling topic for future work.

Another related line of work is focused on the optimization of in-
tegrity taint tracking deployment in web-based applications. Sekar
[23] proposes a taint tracking mechanism to mitigate injection at-
tacks in web applications. The work focuses on input/output behav-
ior of the application, and proposes a lower-overhead, language-
independent and non-intrusive technique that can be deployed to
track taint information for web applications by blackbox taint anal-
ysis with syntax-aware policies. In our work, however, we propose
a deep instrumentation technique to enforce taint propagation in a
layered in-depth fashion. Wei et al. [26] attempt to lower the mem-
ory overhead of TaintDroid taint tracker [9] for Android applica-
tions. The granularity of taint tracking places a significant role in
the memory overhead. To this end, TaintDroid trades taint precision
for better overhead, e.g., by having a single taint label for an array
of elements. Our work reflects a more straightforward object-level
taint approach in keeping with existing Java approaches.

Saxena et al. [19] employ static techniques to optimize dynamic
taint tracking done by binary instrumentation, through the analy-
sis of registers and stack frames. They observe that it is common
for multiple local memory locations and registers to have the same

taint value. A single taint tag is used for all such locations. A
shadow stack is employed to retain the taint of objects in the stack.
Cheng et al. [7] also study the solutions for taint tracking overhead
for binary instrumentation. They propose a byte to byte mapping
between the main and shadow memory that keeps taint informa-
tion. Bosman et al. [5] propose a new emulator architecture for the
x86 architecture from scratch with the sole purpose of minimiz-
ing the instructions needed to propagate taint. Similar to Cheng et
al. [7], they use shadow memory to keep taint information, with
a fixed offset from user memory space. Zhu et al. [27] track taint
for confidentiality and privacy purposes. In case a sensitive input is
leaked, the event is either logged, prohibited or replaced by some
random value. We have modeled a similar technique for an OO lan-
guage, through high level logical specification of shadow objects,
so that each step of computation is simulated for the corresponding
shadow expressions.

Particularly for Java, Chin et al. [8] propose taint tracking of Java
web applications in order to prohibit injection attacks. To this end,
they focus on strings as user inputs, and analyze the taint in char-
acter level. For each string, a separate taint tag is associated with
each character of the string, indicating whether that character was
derived from untrusted input. The instrumentation is only done on
the string-related library classes to record taint information, and
methods are modified in order to propagate taint information. Hal-
dar et al. [11] propose an object-level tainting mechanism for Java
strings. They study the same classes as the ones in Chin et al. [8],
and instrument all methods in these classes that have some string
parameters and return a string. Then, the returned value of instru-
mented method is tainted if at least one of the argument strings is
tainted. However, in contrast to our work, only strings are endowed
with integrity information, whereas all values are assigned integrity
labels in our approach. These previous works also lack retrospec-
tive features.

Phosphor [3, 4] is an attempt to apply taint tracking more gen-
erally in Java, to any primitive type and object class. Phosphor
instruments the application and libraries at bytecode level based
on a given list of taint source and sink methods. Input sanitizers
with endorsement are not directly supported, however. As Phos-
phor avoids any modifications to the JVM, the instrumented code
is still portable. Our work is an attempt to formalize Phosphor in
FJ extended with input sanitization and in-depth enforcement. Our
larger goal is to develop an implementation of in-depth dynamic
integrity analysis for Java by leveraging the existing Phosphor sys-
tem.

7. CONCLUSION AND FUTURE WORK
In this paper we have considered integrity taint analysis in a pure

object oriented language model. Our security model accounts for
sanitization methods that may be incomplete, a known problem in
practice. We propose an in-depth security mechanism based on
combining prospective measures (to support access control) and
retrospective measures (to support auditing and accountability) that
address incomplete sanitization, in particular we consider sanitiza-
tion results to be prospectively endorsed, but retrospectively tainted.
We develop a uniform security policy that specifies both prospec-
tive and retrospective measures. This policy is used to establish
provable correctness conditions for a rewriting algorithm that in-
struments in-depth integrity taint analysis. A rewriting approach
supports development of tools that can be applied to legacy code
without modifying language implementations.

In future work, we aim to extend our existing rewriting tool
for Java bytecode [1] to support in-depth integrity taint analysis in
OpenMRS to harden against XSS and injection attacks. This tool



would incorporate the Phosphor system [3, 4] to achieve efficiency
in the implementation (a common challenge for taint analyses), and
would reflect the model studied in this paper. We are also inter-
ested in exploring hyperproperties of integrity taint analysis and its
higher-level semantics in our language model, especially in relation
to explicit secrecy as proposed for confidentiality taint analysis in
recent work [21].
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APPENDIX
A. AN ILLUSTRATIVE EXAMPLE

Here we demonstrate the example discussed in Section 4.4 with
all reduction steps given, and the corresponding shadow expres-
sions derived from the rules in Figure 3.

EXAMPLE A.1. Similar to Example 4.1 let

mbodyCT (main, TopLevel) =

x, new Sec().secureMeth(new Sec().sanitize(x.concat(

new String(′′world′′))),

and assume the string ′′hello ′′ is tainted with low integrity. Fig-
ure 9 gives the FJ trace, the shadow expressions and the FJtaint
trace.

B. PROOF OF CORRECTNESS

B.1 Proof of Semantics Preservation
In what follows, we prove the semantics preservation given by

Definition 5.1. To this end, in Lemma B.1, we show that if trim
of an expression is a value, that expression eventually reduces to
that value provided it is not a security failure. Moreover, Lemma
B.2 states that if trim of a non-security failure expression e is re-
duced to e′ then e reduces (in potentially multiple steps) to some
expression with the same trim as e′.

LEMMA B.1. For all expressions e, if trim(e) = v, then either
(1) there exists some trace σ and log L such that e,L ⇓ σκ where
κ = v,L′ for some log L′, or (2) e causes a security failure.

PROOF. By induction on the structure of e. ut



LEMMA B.2. For all expressions e, if trim(e),L → e′,L′
then either (1) there exists σ such that e,L ⇓ σκ with κ = e′′,L′′
and trim(e′′) = trim(e′), or (2) e causes a security failure.

PROOF. By induction on the structure of e, and applying Lemma
B.1. ut

Lemma B.3 states that overlay ing a method body with its shadow
is equal to the same method body in the rewritten class table.

LEMMA B.3. overlay(e, srewrite(e)) = µ(e).

PROOF. By induction on the structure of e. ut

Lemma B.4 and Lemma B.5 state that single step and multi step
reductions in FJ preserve :≈.

LEMMA B.4. If τ1e1 :≈ τ2κ2 and e1 → e′1 then there exists σ
such that κ2 ⇓ σ and τ1e1e′1 :≈ τ2σ.

PROOF. By induction on the derivation of e1 → e′1 and apply-
ing Lemmas B.2 and B.3. ut

LEMMA B.5. If τ1e1 :≈ τ2κ2 and e1 ⇓ σ1, then there exists
σ2 such that κ2 ⇓ σ2 and τ1σ1 :≈ τ2σ2.

PROOF. By induction on the derivation of e1 ⇓ σ1 and applying
Lemma B.4. ut

Similarly, Lemma B.6 and Lemma B.7 argue that single step and
multi step reductions in FJtaint preserve :≈.

LEMMA B.6. If τ1e1 :≈ τ2κ2 and κ2 → κ′2 then there exists
σ where e1 ⇓ σ and τ1σ :≈ τ1κ2κ

′
2.

PROOF. By induction on the derivation of κ2 → κ′2 and apply-
ing Lemma B.3. ut

LEMMA B.7. If τ1e1 :≈ τ2κ2 and κ2 ⇓ σ2, then there exists
σ1 such that e1 ⇓ σ1 and τ1σ1 :≈ τ2σ2.

PROOF. By induction on the derivation of κ2 ⇓ σ2 and applying
Lemma B.6. ut

Lemma B.8 states that initial configuration in FJtaint corresponds
to the initial configuration in FJ. Finally, in Theorem 5.1, the se-
mantics preservation property is proven.

LEMMA B.8. Let θ = new C(ν̄) be a tainted input. Then,

new TopLevel().main(θ) :≈
new TopLevel(◦).main(new C(•, ν̄)),∅.

PROOF. By the definition of shadow expressions and :≈. ut

Proof of Theorem 5.1.

PROOF. Lemma B.8 states that initial configuration of a pro-
gram p corresponds to the initial configuration of R(p). Lemmas
B.5 and B.7 extend the correspondence relation for traces of arbi-
trary lengths. More specifically, Lemmas B.8 and B.5 entail the 1st
condition of Definition 5.1, and Lemmas B.8 and B.7 result in the
2nd condition of Definition 5.1. ut

B.2 Proof of Prospective Correctness of Rewrit-
ing Algorithm

In order to prove that prospective component of R is correct
(Theorem 5.2), we first need to show that SPtaint is a safety prop-
erty.

LEMMA B.9. SPtaint is a safety property.

PROOF. Let τ /∈ SPtaint. Then, (bτc ⊗ C(X))⇒{BAD} 6=
C(∅). This implies that there exists some n such that BAD(n) ∈
(bτc ⊗ C(X))⇒{BAD}. Let τ [· · ·n] denote the finite prefix of τ
up to timestamp n. By Definition 3.6 BAD only refers to events
that precede step n, so it follows that bτc ⊗ C(X) ` BAD(n) iff
bτ [· · ·n]c ⊗ C(X) ` BAD(n), i.e. τ /∈ SPtaint iff τ [· · ·n] /∈
SPtaint for finite n, hence SPtaint is a safety property [20]. ut

Proof of Theorem 5.2.
PROOF. Suppose on the one hand that p(θ) is unsafe, which is

the case iff p(θ) ⇓ τ and τ /∈ SPtaint for some τ . Then according
to Lemma B.9, there exists some timestamp n such that τ [· · ·n]
characterizes SPtaint, i.e., BAD(n) is derivable from the rules in
Definition 3.6 and so (τ [· · ·n])σ /∈ SPtaint for any σ. Let n be
the least timestamp with such property and τ ′ = τ [· · ·n − 1],
and τ [n] = E[v.m(new D(ū))] where v.m is an sso invocation and
new D(ū) has low integrity by the Definition 3.6. By Theorem 5.1
there exists some trace σ, such that R(p(θ)) ⇓ σ and τ ′ :≈ σ.
Therefore, by definition of :≈ and→ we may assert that tail(σ) ⇓
κ1κ2κ3 such that

κ1 = E
′[v.m(new D(•, ū))],L

κ2 = E
′[v.log(new D(•, ū)); v.check(new D(•, ū))],L

κ3 = E
′[v.check(new D(•, ū))],L ∪ {new D(•, ū)}

Thus, R(p(θ)) ⇓ σκ1κ2κ3 and therefore R(p(θ)) causes a secu-
rity failure.

Supposing on the other hand thatR(p(θ)) causes a security fail-
ure, it follows that p(θ) is unsafe by similar reasoning (i.e. fun-
damental appeal to Theorem 5.1), since security checks are only
added to the beginning of SSOs and fail if the argument has low
integrity. ut

B.3 Proof of Retrospective Correctness of Rewrit-
ing Algorithm

In what follows, we give a proof for retrospective soundness/-
completeness of rewriting algorithmR, given in Definition 5.5. As
in [1], our strategy is based on an appeal to least Herbrand mod-
els H of the logging specifications and logs (least Herbrand mod-
els are known to exist for safe Horn clause logics with compound
terms [17]). In essence, we demonstrate that audit logs generated
by FJtaint programs are the least Herbrand model of the logging
specification for the source program, hence contain the same infor-
mation.

First, in Lemma B.10 and Lemma B.11, we assert propositions
that hold for the syntactic property of closure in logics with a least
Herbrand model [17].

LEMMA B.10. C(H(X)) = C(X) and H(X) = H(C(X)).

LEMMA B.11. C(C(H(X)) ∩ L) = C(H(X) ∩ L).

We study the cases where a record is added to the audit log for
single step (Lemma B.12) and multi step (Lemma B.13) reductions.



LEMMA B.12. Let e,L → e′,L′. If v ∈ L′ − L then we have
e = E[u.log(v)] for some evaluation context E and value u, v =
new C(t, v′) and t ≤ �.

PROOF. By induction on the derivation of e,L→ e′,L′. ut

LEMMA B.13. Let e,L ⇓ σκ, where κ = e′,L′. If v ∈ L′ − L
then there exists some trace σ′κ1κ2 as the prefix of σκ such that
κ1 = e1,L1, κ2 = e2,L2, where e1 = E[u.log(v)] for some
evaluation context E and value u, v = new C(t, v′) and t ≤ �.

PROOF. By induction on the derivation of e,L ⇓ σκ and apply-
ing Lemma B.12. ut

Lemmas B.14, B.15 and B.16 extend the results of Lemmas B.2,
B.4 and B.5 respectively, for FJtaint traces with maximal length.

LEMMA B.14. For all expressions e, if trim(e),L → e′,L′
then either (1) there exists σ such that e,L ⇓ σκ with κ = e′′,L′′,
trim(e′′) = trim(e′) and κ → ê, L̂ for some ê and L̂ implies
trim(ê) 6= trim(e′) or (2) e causes a security failure.

PROOF. By induction on the structure of e, and applying Lemma
B.1. ut

LEMMA B.15. If τ1e1 :≈ τ2κ2 and e1 → e′1 then there exists
σ such that κ2 ⇓ σ, τ1e1e′1 :≈ τ2σ, and if tail(σ) = κ′2 and
κ′2 → κ′′2 for some κ′′2 then τ1e1e′1 6:≈ τ2σκ′′2 .

PROOF. By induction on the derivation of e1 → e′1 and apply-
ing Lemmas B.14 and B.3. ut

LEMMA B.16. If τ1e1 :≈ τ2κ2 and e1 ⇓ σ1 non-trivially, then
there exists σ2 such that κ2 ⇓ σ2, τ1σ1 :≈ τ2σ2, and if tail(σ2) =
κ′2 and κ′2 → κ′′2 for some κ′′2 then τ1σ1 6:≈ τ2σ2κ

′′
2 .

PROOF. By induction on the derivation of e1 ⇓ σ1 and applying
Lemma B.15. ut

In Lemma B.17, we establish that the log generated by the rewrit-
ten program is the least Herbrand model of the given logging spec-
ification semantics. This allows us to easily prove retrospective
correctness in Theorem 5.3.

LEMMA B.17. Given R(p(θ)) ⇓ σ and τ :≈ σ and σ ; L,
we have:

toFOL(L) = H(X ∪ toFOL(τ)) ∩ L{MaybeBAD}.

PROOF. (Sketch) We first show that toFOL(L) is a subset of
H(X∪toFOL(τ))∩L{MaybeBAD}. Let MaybeBAD(v) ∈ toFOL(L).
According to the definition of toFOL(L), v ∈ L. Using Lemma
B.13, there exists some trace σ′κ1κ2 as the prefix of σ such that
κ1 = e1,L1, κ2 = e2,L2, where e1 = E[u.log(v)] for some
evaluation context E and value u, v = new C(t, v′) and t ≤ �.
Using Theorem 5.1, there exists a trace τ̂ such that p(θ) ⇓ τ̂ and
τ̂ :≈ σ′κ1κ2. This ensures that

MaybeBAD(v) ∈ H(X ∪ toFOL(τ̂)) ∩ L{MaybeBAD},

as u.log(v) could only appear in the body of some method C.m ∈
SSOs , according to the rewriting algorithm R, and thus the pre-
conditions of the last rule defined in Figure 4 are satisfied by X ∪
toFOL(τ̂). Moreover, τ̂ is a prefix of τ , and thus toFOL(τ̂) ⊆
toFOL(τ). This entails that

MaybeBAD(v) ∈ H(X ∪ toFOL(τ)) ∩ L{MaybeBAD}.

Next, we show that H(X ∪ toFOL(τ)) ∩ L{MaybeBAD} is a
subset of toFOL(L). Let MaybeBAD(new D(t′, v̄′)) ∈ H(X ∪

toFOL(τ)) ∩ L{MaybeBAD} and v = new D(v̄′). Then, there exist
some n, C, ū and m where Call(n, C, ū, m, v) ∈ toFOL(τ). More-
over, there exist SE, se, t, se and se′, where Shadow(n, se) and
match(se, SE, shadow C(t, se).m(shadow D(t′, se′))) are derivable
from the rules in X , C.m ∈ SSOs and t′ ≤ �. Let τ [· · ·n] denote
the prefix of τ ending in timestamp n. Based on the definition of
toFOL(·), we can infer that tail(τ [· · ·n]) = E[new C(ū).m(v)].
Using Theorem 5.1, we know that there exists trace σ′ such that
R(p(θ)) ⇓ σ′ and τ [· · ·n] :≈ σ′. Let tail(σ′) = ê, L̂. Therefore,

trim(ê) = overlay(E[new C(ū).m(new D(v̄′))],

SE[shadow C(t, se).m(shadow D(t′, se′))])

= Ê[new C(t, ū).m(new D(t′, v̄′))].

Obviously, trim(ê), L̂ → Ê[new C(t, ū).log(new D(t′, v̄′)); e], L̂
according to the semantics of target language. Then, using Lemma
B.2, tail(σ′) ⇓ σ′′κ1κ2κ3, where

κ1 = Ê
′[new C(t, ū).m(new D(t′, v̄′))], L̂′

κ2 = Ê
′[new C(t, ū).log(new D(t′, v̄′)); e], L̂′

κ3 = Ê
′[e], L̂′ ∪ {new D(t′, v̄′)},

for some Ê′ such that

trim(Ê′[new C(t, ū).log(new D(t′, v̄′)); e]) =

trim(Ê[new C(t, ū).log(new D(t′, v̄′)); e]).

Since τ [· · ·n + 1] :≈ σ′σ′′κ1κ2κ3, τ [· · ·n + 1] is a prefix of τ
and L̂′ ∪ {new D(t′, v̄′)} ⊆ L due to the monotonic growth of log,
we conclude that new D(t′, v̄′) ∈ L. ut

Proof of Theorem 5.3.
PROOF. Let p be a source program and LS be a logging specifi-

cation defined as LS = spec(X, {MaybeBAD}). We aim to show
that for allR(p(θ)) and finite traces τ and σ, such thatR(p(θ)) ⇓
σ, τ :≈ σ and σ ; L, C(toFOL(L)) = LS(τ). By Lemma B.17,
we have

toFOL(L) = H(X ∪ toFOL(τ)) ∩ L{MaybeBAD}.

By Lemma B.10 and Lemma B.11

LS(τ) = C(C(H(X ∪ toFOL(τ))) ∩ L{MaybeBAD})

= C(H(X ∪ toFOL(τ)) ∩ L{MaybeBAD}).

Hence, LS(τ) ≤ C(toFOL(L)) and C(toFOL(L)) ≤ LS(τ)
both hold. ut



p(new String(′′hello ′′))

→ TopLevel.main(new Sec().secureMeth(new Sec().sanitize(new String(′′hello ′′).concat(new String(′′world′′))))

→ TopLevel.main(new Sec().secureMeth(new Sec().sanitize(String.concat(new String(@(new String(′′hello ′′).val,

new String(′′world′′).val))))))

→ TopLevel.main(new Sec().secureMeth(new Sec().sanitize(String.concat(new String(@(′′hello ′′, new String(′′world′′).val))))))

→ TopLevel.main(new Sec().secureMeth(new Sec().sanitize(String.concat(new String(′′hello world′′)))))

→ TopLevel.main(new Sec().secureMeth(new Sec().sanitize(new String(′′hello world′′))))

→ TopLevel.main(new Sec().secureMeth(Sec.sanitize(new String(′′hello world′′))))

→ TopLevel.main(new Sec().secureMeth(new String(′′hello world′′)))

→ TopLevel.main(Sec.secureMeth(new String(′′hello world′′)))

→ TopLevel.main(new String(′′hello world′′))

→ new String(′′hello world′′).

Shadow(1, shadow TopLevel(◦).main(shadow String(•, δ)))
Shadow(2, TopLevel.main(shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(shadow String(•, δ).concat(shadow String(◦, δ)))))
Shadow(3, TopLevel.main(shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(

String.concat(shadow String(•,@(shadow String(•, δ).val, shadow String(◦, δ).val)))))))

Shadow(4, TopLevel.main(shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(

String.concat(shadow String(•,@(δ, shadow String(◦, δ).val)))))))

Shadow(5, TopLevel.main(shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(String.concat(shadow String(•,@(δ, δ)))))))

Shadow(5, TopLevel.main(shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(String.concat(shadow String(•, δ))))))
Shadow(6, TopLevel.main(shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(shadow String(•, δ)))))
Shadow(7, TopLevel.main(shadow Sec(◦).secureMeth(Sec.sanitize(shadow String(•, δ)))))
Shadow(8, TopLevel.main(shadow Sec(◦).secureMeth(shadow String(�, δ))))
Shadow(9, TopLevel.main(Sec.secureMeth(shadow String(�, δ))))
Shadow(10, TopLevel.main(shadow String(�, δ)))
Shadow(11, shadow String(�, δ))

R(p(new String(′′hello ′′))),∅
→ TopLevel.main(new Sec(◦).secureMeth(new Sec(◦).sanitize(new String(•, ′′hello ′′).concat(new String(◦, ′′world′′)))),∅
→ TopLevel.main(new Sec(◦).secureMeth(new Sec(◦).sanitize(

String.concat(new String(•,@(new String(•, ′′hello ′′).val, new String(◦, ′′world′′).val)))))),∅
→ TopLevel.main(new Sec(◦).secureMeth(new Sec(◦).sanitize(

String.concat(new String(•,@(′′hello ′′, new String(◦, ′′world′′).val)))))),∅
→ TopLevel.main(new Sec(◦).secureMeth(new Sec(◦).sanitize(String.concat(new String(•, ′′hello world′′))))),∅
→ TopLevel.main(new Sec(◦).secureMeth(new Sec(◦).sanitize(new String(•, ′′hello world′′)))),∅
→ TopLevel.main(new Sec(◦).secureMeth(Sec.sanitize(new Sec(◦)._sanitize(new String(•, ′′hello world′′)).endorse()))),∅
→ TopLevel.main(new Sec(◦).secureMeth(Sec.sanitize(new String(•, ′′hello world′′).endorse()))),∅
→ TopLevel.main(new Sec(◦).secureMeth(Sec.sanitize(new String(�, ′′hello world′′)))),∅
→ TopLevel.main(new Sec(◦).secureMeth(new String(�, ′′hello world′′))),∅
→ TopLevel.main(Sec.secureMeth(new Sec(◦).log(new String(�, ′′hello world′′));

new Sec(◦).check(new String(�, ′′hello world′′)); new String(�, ′′hello world′′))),∅
→ TopLevel.main(Sec.secureMeth(new Sec(◦).check(new String(�, ′′hello world′′)); new String(�, ′′hello world′′))),

{new String(�, ′′hello world′′)}
→ TopLevel.main(Sec.secureMeth(new String(�, ′′hello world′′))), {new String(�, ′′hello world′′)}
→ TopLevel.main(new String(�, ′′hello world′′)), {new String(�, ′′hello world′′)}
→ new String(�, ′′hello world′′), {new String(�, ′′hello world′′)}

Figure 9: Example A.1: Source trace, shadow expressions and target trace


