
Quantifying Information Leakage of Probabilistic Programs Using
the PRISM Model Checker

Khayyam Salehi
Dept. of Computer Science

Shahrekord University
Shahrekord, Iran

email: kh.salehi@sku.ac.ir

Ali A. Noroozi
Dept. of Computer Science

University of Tabriz
Tabriz, Iran

email: noroozi@tabrizu.ac.ir

Sepehr Amir-Mohammadian
Dept. of Computer Science

University of the Pacific
Stockton, CA, USA

email: samirmohammadian@pacific.edu

Abstract—Information leakage is the flow of information from
secret inputs of a program to its public outputs. One effective
approach to identify information leakage and potentially preserve
the confidentiality of a program is to quantify the flow of
information that is associated with the execution of that program,
and check whether this value meets predefined thresholds.
For example, the program may be considered insecure, if this
quantified value is higher than the threshold. In this paper,
an automated method is proposed to compute the information
leakage of probabilistic programs. We use Markov chains to
model these programs, and reduce the problem of measuring
the information leakage to the problem of computing the joint
probabilities of secrets and public outputs. The proposed method
traverses the Markov chain to find the secret inputs and the
public outputs and subsequently, calculate the joint probabilities.
The method has been implemented into a tool called PRISM-
Leak, which uses the PRISM model checker to build the Markov
chain of input programs. The applicability of the proposed
method is highlighted by analyzing a probabilistic protocol and
quantifying its leakage.

Index Terms—Information leakage; Quantitative information
flow; Confidentiality; PRISM-Leak.

I. INTRODUCTION

Confidentiality is a major concern in cybersecurity that deals
with protecting potentially sensitive data against illegitimate
disclosure. Considering different application domains, secret
data may range over different kinds of information, for in-
stance, medical records in healthcare systems, financial records
in banking systems, and passwords and other factors being
used in authentication systems. Disclosure of sensitive data
to low-confidentiality users has been identified as one of the
common weaknesses in system deployment [1], and Open Web
Application Security Project has identified it as one of the top
ten privacy risks with “very high impact” [2].

Upon executing a program, a low-confidentiality user,
henceforth called an attacker, may gain insight into the pro-
gram secret data by observing its public outputs. This is known
as information leakage. For example, assume that h is a 4-bit
secret variable and l is a publicly available data container,
i.e., it can be freely read by the attacker. Then, in the program
l := h | (1100)b, the attacker can infer the two rightmost
bits of h by observing l.

A widely-studied formalism to avoid these leakages is
noninterference [3][4]. It enforces the policy that no output
should be affected by secret inputs. Although this ensures

the security of programs by capturing all explicit and implicit
flows, it is too restrictive in at least two respects: (1) Nonin-
terference is a hyperproperty [5], and thus only applicable in
meta-level analysis of programs, i.e., it cannot be enforced
at runtime. To overcome this in practice, flow analysis is
restricted to explicit flows only, e.g., through taint trackers
[6][7]; (2) Noninterference is too conservative in many appli-
cation domains by labeling many intuitively secure programs
as insecure. For example, the password-checking program
if user-input = password then success else
failure fi leaks information about what password is
not when the user cannot login, and hence, it does not
satisfy noninterference. This is while, for most applications an
acceptable amount of leakage can be tolerated. This limitation
can be addressed by quantifying the amount of leakage and
considering the ones lower than a predefined threshold as
secure, instead of enforcing a no-leakage policy. Quantifying
information leakage has been widely used in different realms
of cybersecurity, e.g., differential privacy [8][9], the analysis
of OpenSSL Heartbleed vulnerability [10], and the evaluation
of cryptographic algorithms [11].

This work aligns with the second aforementioned issue
of noninterference and in particular, focuses on probabilistic
programs, i.e., programs that exhibit probabilistic characteris-
tics. These characteristics are required for modeling systems
in different application domains, including randomized and
distributed algorithms, unreliable and unpredictable system
behaviors, and model-based performance evaluations [12].

Consider a basic scenario in which the program has a
secret input h and a public output l. The attacker has an
initial uncertainty about h and might infer some information
after running the program and observing l. In this case, the
attacker’s remaining uncertainty is reduced and the difference
between the initial uncertainty and the remaining uncertainty is
equal to the amount of leaked information. Information theory
suggests entropy, e.g., Shannon entropy [13], as a solution to
quantify uncertainty [14].

Several methods have been proposed to quantify the in-
formation leakage of various programs. For example, Kle-
banov [15] uses symbolic execution besides self-composition
to manually compute the leakage of deterministic programs.
Biondi et al. [16] develop a tool, HyLeak, for estimating the
leakage of simple imperative programs. The method proposed

47Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

in our work is fully-automated and computes the exact value
for the leakage. Noroozi et al. [17] use model checking
to compute the leakage of multi-threaded programs. They
consider two assumptions, which are required to measure
the leakage of concurrent programs: the attacker can select
a scheduler and observe intermediate values of the public
variable. Since we focus on sequential programs, there is no
scheduler and the attacker can only observe final values of
the public variable. This is the case in many information flow
methods that analyze sequential programs [15][18]–[21].

A. Security and threat model
Any terminating sequential program exhibiting probabilistic

characteristics is the subject of our study. These programs may
include data associated with different levels of confidentiality,
as well as zero or more neutral components. We assume
the existence of at least two levels of confidentiality: secret
and public. Neutral data specify temporary and/or auxiliary
components of the runtime program configuration that are not
assigned to a certain confidentiality level by nature, e.g., the
stack pointer and loop indexes. The secret input is fixed and
does not change during program execution. This is the case in
any analysis in the context of confidentiality that assumes data
integrity to be out of scope, e.g., [22][23]. Furthermore, the
attacker is assumed to have access to the program source code,
but she cannot modify it. The secret data are received by the
program as input, and thus reading the source code does not
directly reveal secret data. On the other hand, the attacker can
execute the program arbitrary number of times and observe
the public output after execution, i.e., the attacker does not
have access to intermediary values, e.g., through debugging
the code.

B. An illustrative example
In what follows, we describe an illustrative simple example.

We will come back to this example in later sections, to explain
different aspects of our formal study. Consider the following
program:

while l1 < h mod 2 do
l1 := l1 + 1;
l2 := random(2);

od (P1)

Let us assume that h is a secret variable, l1 and l2 are
public variables with initial values set to 0, and random(2)
produces 0 or 1 randomly. After executing the program, the
attacker can infer information about h by observing the final
value of l1. In this paper, we are attempting to propose a
method that can measure the amount of leaked information
from h to l1. As mentioned earlier, the quantification of the
leakage implies a more flexible and granular security policy
enforcement.

C. Contributions

The contributions of this work are as follows:
1) We propose a novel automated method for computing

the information leakage of sequential programs with

probabilistic characteristics. We model operational se-
mantics of the programs by Markov chains, in the same
style as [12][17]. The proposed method explores the
Markov chain in a depth-first manner and finds all pos-
sible paths, from which it computes joint probabilities
of the program’s secrets and public outputs. It then
calculates the exact value of information leakage using
these joint probabilities.

2) The method has been implemented into a tool, called
PRISM-Leak [24]. Input programs of PRISM-Leak are
written in the PRISM language [25]. PRISM-Leak con-
structs the Markov chain of the input program using the
PRISM model checker [25]. PRISM is a well-established
tool for formal modeling and analysis of programs with
probabilistic characteristics. It has been used to analyze
a wide range of algorithms, protocols, and systems
in various application domains such as cybersecurity,
computer networking, biology, game theory, etc.

3) Finally, we demonstrate the applicability of our proposed
method in a case study by analyzing the grades proto-
col [26]. This opens the path for evaluating confidential-
ity of real-world security protocols.

D. Paper outline

The paper proceeds as follows. Section II provides prelim-
inaries of the paper, including formal definition of Markov
chain and how we use it to model operational semantics of
probabilistic programs. In Section III, the proposed method for
computing the information leakage is discussed. Implementa-
tion and the case study are discussed in Section IV. Section V
reviews related work. Finally, Section VI concludes the paper
and discusses future work.

II. BASIC DEFINITIONS

Let X be a random variable. A probability distribution Pr
of random variable X is a function Pr : X 7→ [0, 1], such that∑
x∈X Pr(x) = 1.
A well-established measure to compute uncertainty of a

random variable is Shannon entropy, which is the average
number of bits required to predict a value, considered in the
distribution of the random variable.

Definition 1 (Shannon entropy): The Shannon entropy of a
random variable X is defined as H(X) = −∑x∈X Pr(X =
x). log2 Pr(X = x).

We use Markov chains to model operational semantics of
probabilistic programs. In what follows, we define Markov
chains abstractly. In Section III, we instantiate them for
probabilistic programs.

Definition 2 (Markov chain): A (discrete-time) Markov
chain (MC) is a tuple M = (S,P, ζ), where
• S is a set of states,
• P : S × S 7→ [0, 1] is a transition probability function

such that for all s ∈ S,
∑
s′∈S P(s, s′) = 1, and

• ζ : S 7→ [0, 1] is the initial distribution of states, i.e.,∑
s∈S ζ(s) = 1.

48Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

An MC is called finite if S is finite. A state s contains
the values of variables (secret, public, and neutral) as well as
the program counter in each execution of the program. Given
states s and s′, the function P defines the probability P(s, s′)
of moving from s to s′ in one step. ζ specifies the likelihood
of being an initial state of the program. The set of initial states
of Markov chainM is indicated by Init(M), i.e., Init(M) =
{s ∈ S : ζ(s) > 0}. The set of posterior states of each state
is defined as Post(s) = {s′ ∈ S : P(s, s′) > 0}. A state
s is terminating if Post(s) = ∅. A path π in M is defined
as a sequence of states s0s1 . . . sn, in which s0 is an initial
state, sn is a terminating state, and si+1 ∈ Post(si) for i ∈
{0, 1, . . . , n − 1}. The occurrence probability of π is defined
as

Pr(π = s0s1 . . . sn) =

ζ(s0) if n = 0,

ζ(s0).
∏

0≤i<n
P(si, si+1) otherwise.

III. COMPUTING THE INFORMATION LEAKAGE

In this section, we show how to compute the final leakage
of probabilistic programs. Let P be a terminating probabilistic
program, with a random secret variable h, a public variable
l and possibly some neutral variables. For the cases where
there are more than one secret variable, we concatenate them
to form a single secret tuple. The same is done for public and
neutral variables. This way, we simplify the formal analysis
and only track the flow of a single secret data structure to a
single public output channel. This results in quantifying the ag-
gregate amount of flow from secrets to public outputs. Indeed,
quantification of individual flows in the presence of multiple
secrets and public outputs is feasible in our framework by
revising the confidentiality labels that are assigned to different
variables. For instance, one may only tag single input hi as
secret and the remaining inputs as neutral to solely study the
flow of ith input to the public domain.

We model program P with a Markov chain M = (S,P, ζ).
Each state s ∈ S is a tuple 〈l, h, n, pc〉, where l, h, and n are
values of the public, secret, and neutral variables, respectively,
and pc is the program counter. The transition probability
function P defines probabilities of transitions between states.
ζ is determined by ζ(s0) = Pr(h = h) for each initial state
s0 and s0 = 〈·, h, ·, 0〉. Therefore, the definition of ζ captures
the attacker’s knowledge about program secrets.

When constructing M for P , loops of P are unfolded and
considering that P is terminating, M becomes a directed
acyclic graph (DAG). Initial states are roots and terminating
states are leaves of each DAG. In the following example, we
review the MC of program P1.

Example 1: MC of P1. The MC of P1 is depicted in Figure 1,
where h is a 2-bit value and thus either 0, 1, 2, or 3. For the
sake of brevity, pc is not shown in the graph. Moreover, there
are not any neutral values in this simple example. In each
state, l is defined as 〈l1,l2〉. Note that branches are due to
assigning a random value (0 or 1) to l2.

s0 s1

s2

s3 s4s5

s6

s7

s8 s9

1

1
2

1
2

1

1
2

1
2

h = 0

l = 〈0, 0〉

h = 1

l = 〈0, 0〉

l = 〈1, 0〉

l = 〈1, 0〉 l = 〈1, 1〉

h = 2

l = 〈0, 0〉

h = 3

l = 〈0, 0〉

l = 〈1, 0〉

l = 〈1, 0〉 l = 〈1, 1〉

Figure 1. MC of the program P1.

The attacker runs the program and observes the public
outputs. The public outputs are the values of l in terminating
states and denoted by o. The prior distribution Pr(h) spec-
ifies the initial uncertainty of the attacker and the posterior
distribution Pr(h | o) specifies the remaining uncertainty of
the attacker, which is obtained after running the program and
observing the output o. Therefore, the final leakage of M is
computed as

L(M) = H(h)−H(h | o). (1)

In (1), H(h) is the initial uncertainty and computed as

H(h) = −∑
h∈h

Pr(h = h). log2 Pr(h = h).

H(h | o) is the remaining uncertainty in (1) and calculated as

H(h | o) =
∑
o∈o

Pr(o = o).H(h | o = o). (2)

In (2), H(h | o = o) is defined as

H(h | o = o) =

−
∑
h∈h

Pr(h = h | o = o). log2 Pr(h = h | o = o),

and Pr(h = h | o = o) is computed by

Pr(h = h | o = o) =
Pr(h = h, o = o)

Pr(o = o)
.

P r(h = h, o = o) is the joint probability of h = h and o = o.
Pr(o = o) is the occurrence probability of the output o and
is computed as

Pr(o = o) =
∑
h∈h

Pr(h = h, o = o).

Thus, computing the remaining uncertainty is reduced to
computing the joint probabilities Pr(h, o). Assuming we have
all paths of M and their probabilities, the joint probability
Pr(h = h, o = o) can be calculated as the sum of the

49Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

Pr(h = 0, o = 〈0, 0〉) = Pr(π = s0) = 1/4

Pr(h = 1, o = 〈1, 0〉) = Pr(π = s1s2s3) = 1/8

Pr(h = 1, o = 〈1, 1〉) = Pr(π = s1s2s4) = 1/8

Pr(h = 2, o = 〈0, 0〉) = Pr(π = s5) = 1/4

Pr(h = 3, o = 〈1, 0〉) = Pr(π = s6s7s8) = 1/8

Pr(h = 3, o = 〈1, 1〉) = Pr(π = s6s7s9) = 1/8

Pr(o = 〈0, 0〉) = Pr(h = 0, o = 〈0, 0〉) + Pr(h = 2, o = 〈0, 0〉) = 1/2

Pr(o = 〈1, 0〉) = Pr(h = 1, o = 〈1, 0〉) + Pr(h = 3, o = 〈1, 0〉) = 1/4

Pr(o = 〈1, 1〉) = Pr(h = 1, o = 〈1, 1〉) + Pr(h = 3, o = 〈1, 1〉) = 1/4

Pr(h = 0 | o = 〈0, 0〉) = 1/2, Pr(h = 1 | o = 〈1, 0〉) = 1/2

Pr(h = 1 | o = 〈1, 1〉) = 1/2, Pr(h = 2 | o = 〈0, 0〉) = 1/2

Pr(h = 3 | o = 〈1, 0〉) = 1/2, Pr(h = 3 | o = 〈1, 1〉) = 1/2

Figure 2. 1) Joint probabilities, Pr(h, o), 2) public output occurrence
probabilities, Pr(o), and 3) the posterior probabilities, Pr(h | o), in
P1.

occurrence probabilities of all paths that lead to a terminating
state sn = 〈o, h, ·, ·〉, i.e.,

Pr(h = h, o = o) =
∑

s0∈Init(M), sn=〈o,h,·,·〉

Pr(π = s0 . . . sn).

In the following example, we calculate the information
leakage from h to the public domain in program P1.
Example 2: Information leakage in P1. Assume that initially
the attacker only knows the bit length of h and thus the prob-
ability distribution of h becomes uniform, i.e., Pr(h) = 1/4
for all four possible values of h. Then, the initial uncertainty is
computed as H(h) = −∑h=0,1,2,3(1/4) log2(1/4) = 2. As
explained earlier, in order to calculate the remaining uncer-
tainty, we need to compute the joint probabilities Pr(h, o).
Using the joint probabilities, the public output occurrence
probabilities Pr(o) are computed, and then the posterior
probabilities Pr(h|o) are calculated. These details are given
in Figure 2. Therefore, we would have H(h | o = 〈0, 0〉) =
H(h | o = 〈1, 0〉) = H(h | o = 〈1, 1〉) = 1. These yield the
remaining uncertainty H(h | o) to be equal to 1. Thus, the
amount of leakage is calculated as L = H(h) − H(h | o) =
2−1 = 1 bit. This is in compliance with the intuition that the
attacker infers the least significant bit of the secret.

Figure 3 shows the detailed steps of computing Pr(h, o)
for the Markov chain M. The algorithm uses a higher-order
map function ohMap : o 7→ (h 7→ Pr(h = h, o = o)) to store
the joint probabilities. It traverses the Markov chain M by a
depth-first recursive function, called EXPLOREPATHS(·), and
extracts all paths. It then calculates Pr(h, o).

Time complexity. The costs of computing the information
leakage are dominated by the costs of computing the joint
probabilities in the algorithm shown in Figure 3. The core
of the algorithm is to find all paths of M using depth-first
exploration. M is a DAG and the number of all possible
paths of a DAG can be exponential in the number of its states.
Therefore, computing the leakage of M takes O(2n) time in

Input: finite MC M
Output: a map containing the joint probabilities Pr(h, o)

1: Let ohMap be an empty higher-order map function from
o to h to Pr(h = h, o = o);
// i.e. ohMap : o 7→ (h 7→ Pr(h = h, o = o))

2: Let π be an empty list of states for storing a path;
3: for s0 in Init(M) do
4: EXPLOREPATHS(s0, π, ohMap);
5: return ohMap;

6: function EXPLOREPATHS(s, π, ohMap)
// add state s to the current path from the initial state

7: π.add(s);
// found a path stored in π

8: if s is a terminating state then
9: // assume s = 〈o, h, ·, ·〉

// define hMap as Pr(h, o = o)
10: if o not in ohMap then
11: Let hMap be an empty map from

h to Pr(h = h, o = o);
12: else
13: hMap = ohMap.get(o);
14: if h not in hMap then
15: prob = Pr(π);
16: else
17: prob = Pr(π) + hMap.get(h);
18: hMap.put(h, prob); // Update hMap
19: ohMap.put(o, hMap); // Update ohMap
20: else
21: for s′ in Post(s) do
22: EXPLOREPATHS(s′, π, ohMap);

// done exploring from s, so remove it from π
23: π.pop();
24: return ;

Figure 3. Computing the joint probabilities Pr(h, o).

the worst case, where n is the number of states of M. It
should be noted that this is the expected time complexity for
model checking algorithms, as they analyze the whole state
space [12]. Furthermore, the method is used for a limited
number of times to analyze the security of a program.

IV. IMPLEMENTATION AND CASE STUDY

In this section, we describe an implementation of our
proposed algorithm, employing the PRISM model checker.
Next, as a case study we study the information leakage in
an example protocol.

A. PRISM-Leak: An information leakage quantifier

An efficient implementation of the method requires a model
checker to construct the Markov chain of the input pro-
gram. We have implemented the approach as part of PRISM-

50Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

Source Code
Instrumented

Source Code

Markov ChainLeakage Value

Label

Assignment PRISM

Leakage

Computation

Figure 4. Architecture of PRISM-Leak.

Leak [24]. At a high level, the architecture of PRISM-Leak is
depicted in Figure 4. Source code is in the PRISM language
and label assignment tags program variables with the public
and secret labels. The PRISM model checker builds the
Markov chain and stores it via multi-terminal binary decision
diagrams. These decision diagrams are efficient symbolic data
structures to store states and transitions of Markovian models
[27]. PRISM-Leak uses these diagrams to extract the set of
reachable states and builds a sparse matrix containing the
transitions between the states. Then, it finds the outputs by
traversing the model, computes the joint probabilities of the
secrets and the public outputs according to the algorithm
shown in Figure 3, and employs them to measure the amount
of the final leakage.

B. Case study

In order to evaluate the applicability of the proposed
method, we consider the grades protocol [26] as a case study
and show how the method computes the leakage of proba-
bilistic programs. In the grades protocol, k students s1, . . . , sk
are given secret grades g1, . . . , gk, where 0 ≤ gi < m. The
students aim to compute the sum of their grades, without
revealing their secret grade to other students. For that, each
student si produces a random number ri between 0 and n =
(m−1)×k+1 and announces it only to the student s(i−1)%k.
Then, the student si declares a number di = gi+ri−r(i+1)%k.
The sum of all grades is equivalent to

(∑
i di
)
% n. We

assume the grades are secret, and the declarations and the sum
are public. To evaluate security of the protocol, we consider
two cases: 1) the attacker knows the declarations and the sum
of the grades, and 2) the attacker only knows the sum. If the
amount of leakage is the same for both cases, then the protocol
does not leak secret information via the declarations.

Table I reports the amounts of leakage, as well as the
number of states and transitions of the Markov chains for the
two aforementioned cases. As seen in the table, both leakages
are identical and thus, the protocol is secure, i.e., an attacker
that knows both the declarations and the sum of the grades
gains the same information as an attacker that only knows the
sum. PRISM source code of the protocol is available at the
Github repository of PRSIM-Leak [24].

V. RELATED WORK

In this section, we discuss the related work and compare
them to ours.

Backes et al. [28] propose an automated method to compute
information leakage. They employ the ARMC model checker
to extract the equivalence relation of high values which have
the same output. They enumerate the size of each equivalence
class using the omega-calculator and LATTE (Lattice point
Enumeration). They only consider deterministic programs. In
this respect, our work covers probabilistic programs, as well.

Chothia et al. [29] propose a framework to quantify the
information leakage in every two arbitrary points of a program.
They extend their method to consider Java programs by devel-
oping LeakWatch [30]. LeakWatch can estimate the leakage
using statistical approximation techniques. It also considers
intermediate leakages. Our proposed method calculates the
exact values and does not consider intermediate leakages.

Klebanov [15] uses symbolic execution besides self-
composition to precisely compute the information leakage of
deterministic programs. Although his method is precise, it is
not automated and requires manual effort. On the other hand
our work proposes an automated method.

Biondi et al. [16] develop HyLeak, a tool for measur-
ing the leakage of simple imperative programs. They use a
combination of stochastic program simulations and precise
methods to calculate an estimated joint probability distribution
of secrets and outputs. In contrast, we take a precise approach
in calculating the joint probability distribution, which results
in exact information leakage values.

Pardo et al. [21] develop PRIVUG, which quantifies the
leakage of programs written in Java, Scala, and Python. This
tool estimates the leakage and does not compute the exact
value.

Salehi et al. [31] utilize an evolutionary algorithm to com-
pute channel capacity of concurrent probabilistic programs.
Channel capacity concerns with the maximum amount of
leakage that an attacker can learn from a program. They
employ their method to compute the leakage values of two
anonymity protocols, the dining cryptographers and the single
preference protocols.

In addition to the proposed method of this paper, PRISM-
Leak contains other methods: 1) a quantitative method [17]
which employs a trace-based approach, considering scheduler
effect and intermediate leakages, to compute various types of
information leakage for concurrent programs; and 2) a qual-
itative method [32] that checks satisfiability of observational
determinism, in order to enforce no-leakage policy. This policy
is too restrictive for most applications, as there could be some
tolerable amount of leakage in these applications [14].

VI. CONCLUSION AND FUTURE WORK

We have presented an automated method to measure the
information leakage of probabilistic programs. The method
uses the PRISM model checker to build Markov chain of

51Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

TABLE I. LEAKAGES OF THE GRADES PROTOCOL AND THE SUM OF THE GRADES

m k
The grades protocol The sum of the grades

Mgrades Leakage
(bits)

Msum Leakage
(bits)# states # transitions # states # transitions

2

2 196 228 1.5 (75%) 16 20 1.5
3 3752 4256 1.81 (60.4%) 64 104 1.81
4 92496 102480 2.03 (50.8%) 256 528 2.03

3

2 1179 1395 2.2 (69.3%) 36 45 2.2
3 66366 75600 2.53 (53.1%) 216 351 2.53
4 439668 597780 2.75 (43.3%) 1296 2673 2.75

4

2 4048 4816 2.66 (66.4%) 64 80 2.66
3 455104 519040 2.98 (49.7%) 512 832 2.98
4 3271680 6589440 3.2 (40%) 4096 8448 3.2

the programs. The implementation of the method, PRISM-
Leak, extracts states and transitions of this Markov chain, finds
secrets and outputs, and computes the information leakage.
Finally, we have analyzed a case study to show how the
proposed method can evaluate the security of probabilistic
programs.

As future work, we aim to compare scalability of the
proposed method to other leakage quantification methods,
some of which are explored in related work. We also aim to
incorporate statistical methods to approximate leakage. This
can improve the scalability of the method.

In this paper, we only considered terminating programs.
As future work, we are planning to work on a method for
computing leakage of non-terminating programs. We also aim
to extend the proposed method in order to analyze case
studies in other application domains, such as cryptographic
algorithms.

REFERENCES

[1] “CWE-200: Exposure of Sensitive Information to an Unauthorized
Actor,” https://rb.gy/ac6ui0, [retrieved: 10, 2021].

[2] “OWASP Top 10 Privacy Risks,” https://rb.gy/vhq4qj, [retrieved: 10,
2021].

[3] A. Sabelfeld and A. C. Myers, “Language-based information-flow secu-
rity,” IEEE J-SAC, vol. 21, no. 1, pp. 5–19, 2003.

[4] G. Smith, “Principles of secure information flow analysis,” in Malware
Detection. Advances in Information Security, vol 27. Springer-Verlag,
2007, pp. 291–307.

[5] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” J. Comput.
Secur., vol. 18, no. 6, pp. 1157–1210, 2010.

[6] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld, “Explicit secrecy:
A policy for taint tracking,” in EuroS&P. IEEE, 2016, pp. 15–30.

[7] C. Skalka, S. Amir-Mohammadian, and S. Clark, “Maybe tainted data:
Theory and a case study,” J. Comput. Secur., vol. 28, no. 3, pp. 295–335,
April 2020.

[8] M. S. Alvim, M. E. Andrés, K. Chatzikokolakis, P. Degano, and
C. Palamidessi, “Differential privacy: On the trade-off between utility
and information leakage,” in FAST. Springer, 2011, pp. 39–54.

[9] P. Cuff and L. Yu, “Differential privacy as a mutual information
constraint,” in CCS, 2016, pp. 43–54.

[10] F. Biondi and et al., “Scalable approximation of quantitative information
flow in programs.” in VMCAI, 2018, pp. 71–93.

[11] M. Jurado, C. Palamidessi, and G. Smith, “A formal information-
theoretic leakage analysis of order-revealing encryption,” in CSF. IEEE
Computer Society, 2021, pp. 1–16.

[12] C. Baier and J.-P. Katoen, Principles of model checking. MIT press
Cambridge, 2008.

[13] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2006.

[14] M. S. Alvim and et al., The Science of Quantitative Information Flow.
Springer, 2020.

[15] V. Klebanov, “Precise quantitative information flow analysis—a sym-
bolic approach,” Theor. Comput. Sci., vol. 538, pp. 124–139, 2014.

[16] F. Biondi, Y. Kawamoto, A. Legay, and L.-M. Traonouez, “Hyleak:
hybrid analysis tool for information leakage,” in ATVA. Springer, 2017,
pp. 156–163.

[17] A. A. Noroozi, J. Karimpour, and A. Isazadeh, “Information leakage of
multi-threaded programs,” Comput. Electr. Eng., vol. 78, pp. 400–419,
2019.

[18] R. Chadha, U. Mathur, and S. Schwoon, “Computing information flow
using symbolic model-checking,” in FSTTCS. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2014, pp. 505–516.

[19] A. Weigl, “Efficient sat-based pre-image enumeration for quantitative
information flow in programs,” in DPM. Springer, 2016, pp. 51–58.

[20] M. S. Alvim and et al., “An axiomatization of information flow mea-
sures,” Theor. Comput. Sci., vol. 777, pp. 32–54, 2019.

[21] R. Pardo, W. Rafnsson, C. Probst, and A. Wasowski, “Privug: Quantify-
ing leakage using probabilistic programming for privacy risk analysis,”
arXiv preprint arXiv:2011.08742, 2020.

[22] F. Biondi, A. Legay, P. Malacaria, and A. Wasowski, “Quantifying
information leakage of randomized protocols,” Theor. Comput. Sci., vol.
597, no. C, pp. 62–87, 2015.

[23] S. Amir-Mohammadian, “A semantic framework for direct information
flows in hybrid-dynamic systems,” in CPSS-AsiaCCS. ACM, June 2021,
pp. 5–15.

[24] A. A. Noroozi, K. Salehi, J. Karimpour, and A. Isazadeh, “Prism-leak
- a tool for computing information leakage of probabilistic programs,”
https://rb.gy/elgkyi, [retrieved: 10, 2021].

[25] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in CAV. Springer, 2011, pp. 585–
591.

[26] C.-D. Hong, A. W. Lin, R. Majumdar, and P. Rümmer, “Probabilistic
bisimulation for parameterized systems,” in CAV. Springer, 2019, pp.
455–474.

[27] D. Parker, “Implementation of symbolic model checking for probabilistic
systems,” Ph.D. dissertation, University of Birmingham, 2002.

[28] M. Backes, B. Köpf, and A. Rybalchenko, “Automatic discovery and
quantification of information leaks,” in S&P. IEEE, 2009, pp. 141–
153.

[29] T. Chothia, Y. Kawamoto, C. Novakovic, and D. Parker, “Probabilistic
point-to-point information leakage,” in CSF. IEEE, 2013, pp. 193–205.

[30] T. Chothia, Y. Kawamoto, and C. Novakovic, “Leakwatch: Estimating
information leakage from java programs,” in ESORICS. Springer, 2014,
pp. 219–236.

[31] K. Salehi, J. Karimpour, H. Izadkhah, and A. Isazadeh, “Channel
capacity of concurrent probabilistic programs,” Entropy, vol. 21, no. 9,
p. 885, 2019.

[32] A. A. Noroozi, K. Salehi, J. Karimpour, and A. Isazadeh, “Secure
information flow analysis using the prism model checker,” in ICISS.
Springer, 2019, pp. 154–172.

52Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

