
Towards Concurrent Audit Logging in
Microservices

Sepehr Amir-Mohammadian
Dept. of Computer Science

University of the Pacific
Stockton, CA, USA

samirmohammadian@pacific.edu

Afsoon Yousefi Zowj
Dept. of Computer Science

University of the Pacific
Stockton, CA, USA

ayousefizowj@pacific.edu

Abstract—Information-algebraic models have been shown as
effective semantic frameworks in the specification of audit logging
requirements. These semantic frameworks underlie implementa-
tion models that formally guarantee correctness of audit logs.
Recently, one such implementation model has been proposed for
concurrent systems. In this paper, we study the deployment of an
instrumentation tool based on this implementation model, aiming
at microservices-based applications that are built by Java Spring
framework. This tool instruments these applications according to
a given logging specification, described in JSON. A set of events
in one or more microservices may necessitate the generation
of log entries in a specific microservice. Instrumentation of an
application enables different microservices of that application to
concurrently generate audit logs.

Index Terms—Audit logs, concurrent systems, microservices,
programming languages, security

I. INTRODUCTION

Insufficient audit logging has been a major application

security problem. Proper monitoring of security-critical events

in an application can potentially mitigate major data breaches.

Open Web Application Security Project has identified insuf-

ficient logging and monitoring as one of the top ten security

risks in the web [1], and Common Weakness Enumeration sys-

tem recognizes it as a recurrent problem in software security

[2]. In addition, efficiency of audit logging plays a crucial role

in system performance. Efficient audit logging entails to only

record what is necessary for a posteriori analysis and recovery,

rather than naively collecting excessive information in the log

that hinders timely response to security incidents [3].

In this regard, an information-algebraic [4] semantic frame-

work has been proposed to define audit logging correctness

[5], which ensures to record factual, necessary and sufficient

data in the log, and thus avoids both insufficient and excessive

logging. This is accomplished by comparing the information

contained in the log and the information that must be in the

log. The latter refers to the specification of audit logging

requirements. These specifications recognize what must be

logged, given an execution trace. This way, the semantic

framework supports the separation of policy from programs,

which underlies program instrumentation techniques to imple-

ment audit logging on legacy systems.

Different implementation models of correct audit logging

have been proposed with provable guarantees. For example,

the semantic framework of audit logging is used to define

an implementation model for linear process execution [5].

Using this implementation model, for instance, audit logging

capability is considered as an extension to a medical records

system (MRS), where all preconditions for logging depend on

the events that transpire in the same program execution thread.

Recently, an implementation model has been proposed for

concurrent systems, where logging an event may be condi-

tioned on the occurrence of events in one or more concur-

rent components [6]. This model proposes an algorithm to

instrument concurrent systems that are specified in a process

calculus, and any instrumented system provably guarantees

correct audit log generation. The algorithm receives a formal

specification of audit logging requirements along with the

source concurrent system as input. This specification uses

Horn clauses to assert which events should be logged as well

as the preconditions to log those events. Using Horn clauses

is helpful in actual implementations, since it facilitates to use

off-the-shelf logic programming tools.

In this paper, we discuss one such implementation of the

instrumentation algorithm for concurrent systems, based on

the aforementioned model. Our tool receives the source code

of a microservices-based application as input, along with a

specification of logging requirements in JSON format. The

application is assumed to be deployed in Java Spring frame-

work. The tool parses the JSON specification of requirements

and translates them to Horn clauses that are supplied to a logic

programming engine. It then instruments the application with

audit logging capabilities. The instrumented application com-

municates with the logic programming engine in appropriate

places to infer what to log.

In recent years, there has been a growing trend toward the

deployment of applications with microservices architecture.

For example, microservices-based healthcare is anticipated to

experience considerable increase in market value in near future

[7]. In this architecture, the system is decomposed into a set of

loosely-coupled, minimal and fine-grained processes that are

executed independently and collaboratively. Each microservice

has its own back-end database and can be executed in its own

container or machine. Communication between microservices

is usually done through message passing, in particular using

RESTful APIs. Microservices come with several advantages

1357

2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-6654-2463-9/21/$31.00 ©2021 IEEE
DOI 10.1109/COMPSAC51774.2021.00191

Fig. 1: An Example MRS.

including better maintainability, testing, and adaptation to

newer technologies, and thus improved security and fault toler-

ance. In today’s world, microservice deployment is supported

by several conventional programming languages.

Example: Microservices-based MRS. As an example, con-

sider an MRS with microservices architecture. An MRS may

include different microservices to accomplish different tasks.

Figure 1 depicts an oversimplified system consisting of a front-

end service, an authorization service, and a patient service

among other services. Application front-end includes API

gateway that relays requests from clients to back-end services,

using certain proxies. Patient service handles patient data, and

authorization service manages different operations related to

controlling access to system resources. One such operation is

breaking the glass [8]. This operation is used in critical cases

to bypass access control. Breaking the glass requires the users

who run this operation to be accountable for their actions, i.e.,

certain actions of the users who bypass access control need be

recorded in the log for postfacto accountability analyses. One

such action could be reading patient medical history. Indeed,

this simple example demonstrates an audit logging require-

ment where the event to be logged in a given component of

the concurrent system is conditioned on a preceding event

that belongs to another component. The former event refers

to reading patient medical history in patient microservice, and

the latter event refers to breaking the glass in authorization

microservice. We will return to this example throughout the

paper, as we explore the model and its deployment.

Paper outline. The rest of the paper is organized as follows.

In Section II, we review the formal process-algebraic imple-

mentation model. In Section III, we discuss our tool to instru-

ment microservices in Java Spring. In addition, we present a

demo of a microservices-based MRS and its instrumentation

by our tool. Related work is discussed in Section IV. Finally,

Section V concludes the paper.

II. IMPLEMENTATION MODEL

Our instrumentation tool follows a concurrent audit logging

model with correctness guarantees. In this section, we briefly

review this model. The reader is referred to [6] for the full

formalization and correctness results of this model.

A. Source System Model

The source system calculus, denoted by Π, relies on a

variant of π-calculus [9] to specify concurrent systems. Π

∀t0, · · · , tn, xs0 , · · · , xsn .Call(t0, A0, B0, xs0)

n∧

i=1

(
Call(ti, Ai, Bi, xsi) ∧ ti <

t0
) ∧ ϕ(t0, · · · , tn) ∧ ϕ

′
(xs0 , · · · , xsn) =⇒ LoggedCall(A0, B0, xs0)

Fig. 2: LScall clause structure.
CL(Authorization)(breakTheGlass) = [breakTheGlass

Authorization � P] for some P

CL(Patient)(getMedicalHistory) = [getMedicalHistory
Patient � Q] for some Q

∀t0, t1, p, u .Call(t0, Patient, getMedicalHistory, [p, u]) ∧

Call(t1, Authorization, breakTheGlass, [u]) ∧ t1 < t0 =⇒

LoggedCall(Patient, getMedicalHistory, [p, u])

Fig. 3: Example logging specification for an MRS.

includes top-level agents A that correspond to the concurrent

components of the system, and sub-agents B of top-level

agents A, denoted by BA. Top-level agents are supposed to

execute in parallel and occasionally communicate with each

other to accomplish their own tasks, and in aggregate the

concurrent system. Sub-agents are treated as internal modules,

procedures, or functions of a top-level agent. The existence of

universal codebase CU and local codebase CL are assumed

that respectively consist of top-level agent definitions of the

form A(x1, · · · , xn) � P , and sub-agent definitions of the

form BA(x1, · · · , xn) � P , where P is a π-calculus process.

B. A Class of Logging Specifications

Horn clause logic is used to specify audit logging re-

quirements in this implementation model. In particular, a

class of specifications is considered that reflects on time-

based relations among different events of a concurrent system,

meaning that a particular event must be logged as long as

certain set of events, in potentially different components of

the concurrent system, have already taken place. These events

may need to satisfy certain properties, e.g., following certain

ordering in time, etc. This class of specifications is denoted

by LScall , in which each event is an invocation of an agent

module, i.e., a sub-agent. LScall includes a set of Horn clauses

of the form given in Figure 2, where Call(t, A,B, xs) specifies

the event of invoking sub-agent BA at time t with list of

parameters xs . ϕ(t0, · · · , tn) is a possibly empty conjunctive

sequence of literals of the form ti < tj . A0 is called a

logging event agent, whereas other Ais are called trigger
agents. Similarly, logging event sub-agent refers to B0, and

other Bis are called trigger sub-agents. Logging preconditions
are predicates Call(ti, Ai, Bi, x̃) for all i ∈ {1, · · · , n}.

As an example, consider the microservices-based MRS,

described in Figure 1. Each microservice is an agent in

Π, including Authorization and Patient services. These

agents may respectively include modules to break the glass

and read patient medical history, which are defined as part

of CL (Figure 3). Moreover, Figure 3 describes the logging

specification in LScall that is associated with the break-the-

glass policy. In this clause, t0 and t1 are timestamps, and t1
precedes t0. p refers to the patient identifier, and u is the

user identifier who breaks the glass and attempts to read the

medical history of p later on.

C. Target System Model

The target system model, denoted by Πlog, is an exten-

sion to Π. The instrumentation algorithm maps a Π sys-

1358

tem to a Πlog system. Πlog is extended with four prefixes:

callEvent(A,B, x̃), addPrecond(x,A), sendPrecond(x,A)
and emit(A,B, x̃), in which x̃ is considered as a single list

of names. The runtime environment is also extended with

four components: 1) timing counter t, 2) mapping Δ(·) from

agent A to the set of logging preconditions that denote the

events transpired locally in A, 3) mapping Σ(·) from logging

event A to the set of all logical preconditions that have

taken place in A’s trigger agentsß (these preconditions must

be communicated between A and all trigger agents), and 4)

mapping Λ(·) from A to the audit log recorded by A.

callEvent(A,B, x̃) updates Δ(A) with predicate

Call(t, A,B, x̃). addPrecond(x,A) updates Σ(A) with

precondition x. sendPrecond(x,A) converts Δ(A) to a

transferable object and sends it though link x. Finally,

emit(A,B, x̃) studies the derivability of LoggedCall(A,B, x̃)
and accordingly Λ(A) is updated with this predicate.

D. Instrumentation Algorithm

Instrumentation algorithm I takes a Π system and a log-

ging specification from LScall , and produces a Πlog system

with the following details. I adds fresh links cij between

every logging event agent Ai and trigger agent Aj , in order

to communicate logging preconditions (by sendPrecond and

addPrecond prefixes). If sub-agent BA is a trigger, then its

execution must be preceded by callEvent prefix, so that the

logging precondition is stored in Δ(A). If sub-agent BA is a

logging event agent, the execution of BA must be preceded

by callEvent, similar to the previous case. Next, it must

communicate on appropriate links (cijs) with all trigger agents.

To this end, BA is supposed to notify each of those agents to

send their collected preconditions, and then it must add them

to Σ(A). This is done using addPrecond prefixes. Then, it

should study whether the invocation needs to be logged, before

following normal execution. This is facilitated by emit prefix.

If Aj is a trigger agent then it must be able to handle

incoming requests for collected preconditions. This is done by

adding a fresh sub-agent to Aj that always listens for requests

on the dedicated link (cij) between itself and the logging event

agent. This sub-agent is denoted by Dij . Upon receiving such

a request, Dij sends back the preconditions, handled by prefix

sendPrecond, and then continues to listen on cij .

As an example consider the instrumentation of the MRS

described in Figures 1 and 3. According to the logging spec-

ification, getMedicalHistoryPatient is the logging event,

and breakTheGlassAuthorization is the only trigger. I in-

struments the system as described in Figure 4. A new link

cPA is established between the two agents, and sub-agents are

instrumented accordingly. In addition, sub-agent DPA is added

to Authorization microservice that indefinitely responds to

the requests from Patient microservice on cPA.

III. INSTRUMENTING MICROSERVICES

In this section, we explain the implementation of the instru-

mentation algorithm for microservices-based applications, as

well as a demo of how the tool modifies these applications

C′
L(Authorization)(breakTheGlass) =

[
breakTheGlass

Authorization
(u) �

callEvent(Authorization, breakTheGlass, [u]).P
]

C′
L(Patient)(getMedicalHistory) =

[
getMedicalHistory

Patient
(p, u) �

callEvent(Patient, getMedicalHistory, [p, u]). ¯cPA.cPA(f).addPrecond(f, Patient).

emit(Patient, getMedicalHistory, [p, u]).Q
] C′

L(Authorization)(DPA) =

[
D

Authorization
PA (cPA) � cPA.sendPrecond(cPA, Authorization).D

Authorization
PA (cPA)

]

Fig. 4: Example Instrumentation of the MRS.

based on different logging specifications. In our instrumenta-

tion tool, each microservice of an application is treated as an

agent of the concurrent system, whereas each method defined

in some library of a microservice is considered as a sub-agent.

A. Instrumentation Tool: LogInst

We have implemented the proposed algorithm I for

microservices-based applications that are deployed using Java

Spring Framework. Our instrumentation tool [10], LogInst,

receives a logging specification along with an application

consisting of two or more microservices, and rewrites those

microservices accordingly. LogInst extends microservices

with required RESTful APIs that facilitate the communication

between microservices for the sake of audit logging.

The logical specification of logging requirements (Section

II-B) is passed as an argument to LogInst in JSON for-

mat. LogInst parses this JSON file and extracts logging

specification in the form of Horn clauses, along with iden-

tifying triggers and logging events. The paths to different

microservices of the application are also passed to LogInst.

LogInst applies modifications to each microservice compo-

nent according to the logging specification. In addtion, the path

to the Prolog engine must be fed to LogInst. LogInst uses

SWI Prolog [11] to logically infer the derivation of logging

events according to the logging specification, the set of facts

regarding trigger events, etc.

LogInst uses aspect-oriented programming (AOP), in

particular AspectJ, to weave concurrent logging capability into

microservices. For this purpose, LogInst extends the Project

Object Model of the microservices which need to be instru-

mented by spring-boot-starter-aop dependency.

According to the implementation model, the configuration

of the concurrent system includes three different structures to

store the logging preconditions that are transpired locally (Δ),

logging preconditions that are originated remotely (Σ), and the

audit logs recorded by an agent (Λ). These structures are added

by LogInst as repositories of logical facts that are kept on

nonvolatile memory. If a microservice is only a trigger, then

a repository is added to that microservice to store logging

preconditions that take place locally in that microservice.

However, if a microservice is a logging event, then that

microservices is extended with all three types of repositories.

We call these repositories local-db, remote-db, and

log-db, resp. Note that according to the definition of I
(Section II-D), a trigger is only concerned with locally tran-

spired preconditions (through callEvent prefixes), whereas a

logging event needs to access all three types of aforementioned

structures (through callEvent, addPrecond, and emit prefixes).

1359

I extends every trigger with sub-agents, Dij , that send back

the locally generated preconditions upon receiving a request

on a dedicated link (using sendPrecond prefix). LogInst
implements this feature by extending each trigger microser-

vice with a REST controller that sends back the content

of local-db, if it receives an HTTP GET request on the

dedicated path /localdb. This controller is denoted by

LocalDBController, henceforth. On the other side, a

logging event microservice is supposed to contact the trigger

on dedicated links to receive the preconditions that are tran-

spired in trigger agents. LogInst facilitates this by extending

every logging event microservice with a web client that sends

asynchronous HTTP GET requests to /localdb path on

trigger microservices and collects the responses. We have

called this service RestClient.

As mentioned earlier, AOP is used to add logging capabili-

ties to microservices. For this purpose, LogInst identifies the

pointcuts in which an advice needs to be defined. According to

I, trigger sub-agents are preceded by callEvent prefixes. For

this purpose, LogInst defines before aspects for each of the

trigger methods, where the advice includes the construction

of preconditions from the join points and adding them to

local-db. This implements the semantics of callEvent.
I instruments logging event sub-agents by inserting a se-

quence of operations before the execution of these sub-agents.

This sequence includes callEvent prefixes, communication

on dedicated links to receive remotely transpired logging

preconditions, adding them to Σ using addPrecond prefixes,

and finally checking if logging events should to be logged,

using emit. LogInst handles this by defining before aspects

for the pointcuts that correspond to logging event methods.

Similar to the aspects defined for trigger methods, the advice

for logging event methods starts with the construction of pre-

conditions from join points and adding them to local-db.

Next, RestClient is used to asynchronously send an HTTP

GET request on the predefined path /localdb to each of the

trigger microservices, and collect the results in remote-db.

This implements the semantics of addPrecond prefix. Then,

SWI Prolog engine is invoked to add the logging specification,

and the contents of local-db and remote-db. Finally, the

Prolog engine is queried to study if the invocation of logging

event must be logged, and accordingly log-db repository

is updated. These final steps implement the semantics of

emit prefix. In order to facilitate the communication between

SWI Prolog engine and Java Virtual Machine, InterProlog

Java/Prolog SDK [12] is used.

Figure 5 specifies the advice for triggers and logging events

in general form. Figure 7a depicts some of the aforementioned

modifications that LogInst applies architecturally to the

logging event and trigger microservices.

B. Case Study: Instrumenting MRSDemo with LogInst

In Section I, we discussed an oversimplified MRS con-

sisting of several loosely-coupled microservices. We have

implemented [13] a demo of this system, MRSDemo, consisting

of several microservices, using Java Spring Boot [14]. The

@Before("execution (some trigger)")
public void someAspect(JoinPoint){

...
build precondition from JoinPoint
add precondition to local-db
...

}

@Before("execution (some logging event)")
public void someAspect(JoinPoint) {

...
build precondition from JoinPoint
add precondition to local-db
...
send GET to triggers
collect the responses in remote-db
...
add logging specification to the engine
add the content of local-db to the engine
add the content of remote-db to the engine
query the engine and update log-db
...

}

Fig. 5: Pseudocode of before advice for triggers and logging events.

front-end microservice of MRSDemo authenticates users and acts

as the API gateway by relaying requests to the back-end

microservices.

In the following, we explain how MRSDemo is instrumented

by LogInst for a given logging specification. In Figure 3, we

have described a logging specification that enforces logging

access to patient medical history at any point after breaking

the glass. We can assert a similar logging specification rule in

JSON [10] , which is more verbose than its logical equivalent.

LogInst parses that JSON specification and constructs the

Horn clause given in Figure 6 (ver. 1), which is then added

to SWI Prolog engine fact base. Note that in this Horn clause

presentation, we have redacted the full package names of the

trigger and logging event methods and replaced them with

<package>, for the sake of space economy. LogInst
instruments MRSDemo according to this logging specification

rule as follows: spring-boot-starter-aop dependency

is added to the POM of Patient and Authorization services.

Authorization service is extended with local-db.

Patient service is extended with local-db, as well

as remote-db, and log-db. Authorization service is

extended with the REST controller LocalDBController
that responds to requests on path /localdb. Patient

service is extended with RestClient web client. A

before aspect is added to Authorization service with

AuthorizationController.breakTheGlass
as its pointcut. This aspect builds preconditions from

the join point and appends them to local-db. A

before aspect is added to Patient service with pointcut

PatientController.getPatientMedHistByName,

to 1) build preconditions from the join point and append

them to local-db, 2) send HTTP GET request on path

/localdb to Authorization service, and store the results in

remote-db repository, 3) add the logging specification, and

contents of local-db and remote-db repositories to the

SWI Prolog engine, and 4) send queries to the Prolog engine

to check derivability of loggedfunccall predicates and

accordingly update log-db with the engine’s response.

These changes describe the real-world instrumentation of

the MRS, formally given in Figure 4. Note that Authentication

microservice is unaffected when instrumented by LogInst,

as it does not include any trigger or logging event methods

1360

/* Version 1 */
loggedfunccall(T0, patient-service,

"<package>.PatientController.getPatientMedHistByName", [U, P]) :-
funccall(T0, patient-service,
"<package>.PatientController.getPatientMedHistByName", [U, P]),

funccall(T1, authorization-service,
"<package>.AuthorizationController.breakTheGlass", [U]),

<(T1, T0), ==(U, user).

/* Version 2 */
loggedfunccall(T0, patient-service,

"<package>.PatientController.getPatientMedHistByName", [U, P]) :-
funccall(T0, patient-service,
"<package>.PatientController.getPatientMedHistByName", [U, P]),

funccall(T1, authorization-service,
"<package>.AuthorizationController.breakTheGlass", [U]),

funccall(T2, authentication-service,
"<package>.AuthenticationService.authenticate", [U]),

<(T1, T0), <(T2, T1), ==(U, user).

/* Version 3 */
loggedfunccall(T0, patient-service,

"<package>.PatientController.getPatientMedHistByName", [U, P]) :-
funccall(T0, patient-service,
"<package>.PatientController.getPatientMedHistByName", [U, P]),

funccall(T1, authorization-service,
"<package>.AuthorizationController.breakTheGlass", [U]),

funccall(T2, patient-service,
"<package>.PatientController.getAllPatients", [U]),

funccall(T3, authorization-service,
"<package>.AuthorizationController.getBTGUsers", []),
<(T1, T0), <(T2, T0), <(T3, T0), ==(U, user).

Fig. 6: Different versions of break-the-glass policy specified as a
Horn clause.

according to the logging specification.

The two other versions (Figure 6) are example extensions to

the policy ver. 1 . In ver. 2, authenication is considered as an

additional trigger. Therefore, in addition to the aforementioned

changes, LogInst extends Authentication microservice with

local-db repository, LocalDBController, and a before
aspect (trigger version). The before aspect of Patient microser-

vice is also extended with sending HTTP GET requests to

Authentication microservice on path /localdb, and storing

the results in remote-db. In ver. 3, two additional triggers

are considered in Authorization and Patient microservices.

LogInst applies the same changes given above, along with

defining before aspects for each extra trigger. Figures 7b and

7c visually describe some of the aforementioned changes

to MRSDemo by LogInst, considering each version of the

policy.These instrumented versions are accessible in [10],

along with other examples of logging specifications, and their

associated instrumented counterparts.

IV. RELATED WORK

Audit logging in microservices. In recent years, construct-

ing software in terms of decoupled microservices [15]–[18]

has been a trending approach in web application design and

deployment, and thus different studies have been conducted

on microservices security [19]–[21]. In practice, enforcing in-

depth security has pushed platform-specific monitoring and

logging techniques for microservices, e.g., in Azure Ku-

bernetes Service [22] and Spring Security Framework [23],

[24]. One common approach has been to establish a central

logging service with data visualization capabilities [25]. Ex-

amples include a provenance logger for microservices-based

applications [26], and an architecture for IoT services that

includes logger microservices in Web of Objects platform

[27]. Our approach in audit logging is concurrent rather than

central, i.e., any microservice is able to log events based

on preconditions that may occur in other microservices as

well as that microservice. This boosts the expressivity of the

enforcible logging policies. There have been other approaches

to define semantics of microservices, including Petri nets [28].

Formal study of audit logging. One line of work wrt formal

study of audit logging focuses on the security of logs, in

particular through cryptographic techniques, e.g., to establish

forward secrecy [29], to ensure trustworthiness of logs [30],

[31], and to preserve privacy in auditing [32]. These techniques

assume that logs are given in the first place to be secured.

However, in this paper we aim at developing a tool to generate

audit logs according to a provably correct model, and thus

security of the logged data is orthogonal to it.

Another line of work uses logical frameworks to establish

accountability in access to system resources. Examples include

a framework to enforce accountability goals in discretionary

access control [33], accountability wrt access to personal infor-

mation based on owner-defined usage policies [34], distributed

accountability based on turn-based games [35], and logging the

proof of having access to system resources [36], [37]. Another

related area of work is the language-level analysis of generated

audit logs [38], [39].

Correct audit logging. Information algebra [4] has been

used to describe the semantics of audit logging [5] for linear

process execution that defines notion of correctness for audit

logs, along with an instrumentation model that guarantees

to generate correct audit logs. Lately, an instrumentation

model has been proposed for concurrent systems based on

the information-algebraic semantic framework [6]. This model

enjoys correct audit logging, which has been the basis for our

proposed instrumentation tool.

Provenance. Audit logging is closely associated with the

notion of provenance tracking [40]–[42]. Recent works in this

area include ClearScope [43] a provenance tracker for Android

devices, CamFlow [44] an auditing and provenance capture

utility in Linux, and AccessProv [45] an instrumentation tool

to discover vulnerabilities in Java applications.

V. CONCLUSION

In this paper, we have proposed a tool, LogInst, to

instrument microservices-based applications that are deployed

in Java Spring Framework for audit logging purposes. Our

tool is based on an implementation model for concurrent

systems that guarantees correctness of audit logging, using

an information-algebraic semantic framework. LogInst re-

ceives the application source code, consisting of two or more

microservices, along with a specification of audit logging

requirements in JSON format. LogInst parses the JSON

specification and extracts Horn clauses that are fed to a logic

programming engine. LogInst instruments the microservices

according to this specification. The instrumentation includes

adding new repositories to the corresponding microservices,

extending RESTful APIs on those microservices for logging-

related communications, and weaving audit logging into the

control flow of microservices using AspectJ. Our case study

is a medical records system in which certain actions in autho-

rization microservice may trigger logging events in access to

patient medical data.

1361

(a) Structure of the logging event and trigger
microservices, instrumented by LogInst.

(b) MRSDemo instrumented by LogInst using
versions 1 and 3 in Figure 6.

(c) MRSDemo instrumented by LogInst using
version 2 in Figure 6.

Fig. 7: Architecture of microservices after instrumentation.

REFERENCES

[1] “Top 10-2017 A10-Insufficient Logging & Monitoring,”
https://rb.gy/mj1xpf, 2017, accessed: 2021-03-05.

[2] “CWE-778: Insufficient Logging,” https://rb.gy/2hhb5o, 2021, accessed:
2021-04-07.

[3] “CWE-779: Logging of Excessive Data,” https://rb.gy/myvjgc, 2021,
accessed: 2021-04-07.

[4] J. Kohlas and J. Schmid, “An algebraic theory of information: An
introduction and survey,” Information, vol. 5, no. 2, pp. 219–254, 2014.

[5] S. Amir-Mohammadian, S. Chong, and C. Skalka, “Correct audit log-
ging: Theory and practice,” in POST, 2016, pp. 139–162.

[6] S. Amir-Mohammadian and C. Kari, “Correct audit logging in concur-
rent systems,” ENTCS, vol. 351, pp. 115–141, September 2020.

[7] “Global Microservices In Healthcare Market Will Reach USD 519
Million By 2025,” https://rb.gy/pi8y7l, 2019, accessed: 2021-04-07.

[8] P. Matthews and H. Gaebel, “Break the glass,” in HIE Topic Series.
Healthcare Information and Management Systems Society, 2009.

[9] J. Parrow, “An introduction to the π-calculus,” in Handbook of Process
Algebra. Elsevier, 2001, pp. 479–543.

[10] S. Amir-Mohammadian and A. Y. Zowj, “LogInst: Instrumenting Mi-
croservices of Java Web Apps for Auditing,” https://rb.gy/h5gihs, 2020.

[11] “SWI Prolog,” https://www.swi-prolog.org/, accessed: 2021-04-15.
[12] M. Calejo, “Interprolog: Towards a declarative embedding of logic

programming in java,” in JELIA. Springer, 2004, pp. 714–717.
[13] S. Amir-Mohammadian and A. Y. Zowj, “Demo microservices-based

medical records system (MRS),” https://rb.gy/fgrtbk, 2020.
[14] P. Webb, D. Syer, J. Long, S. Nicoll, R. Winch, A. Wilkinson,

M. Overdijk, C. Dupuis, and S. Deleuze, “Spring boot reference guide,”
Part IV. Spring Boot features, vol. 24, 2013.

[15] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” in Present and ulterior software engineering. Springer, 2017, pp.
195–216.

[16] C. Guidi, I. Lanese, M. Mazzara, and F. Montesi, “Microservices: a
language-based approach,” in Present and Ulterior Software Engineer-
ing. Springer, 2017, pp. 217–225.

[17] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The pains and
gains of microservices: A systematic grey literature review,” J. Syst.
Software, vol. 146, pp. 215–232, 2018.

[18] J. Salibindla, “Microservices api security,” Int. J. Eng. Res., vol. 7, no. 1,
pp. 277–281, 2018.

[19] M. McLarty, R. Wilson, and S. Morrison, Securing Microservice APIs.
O’Reilly Media, Inc., 2018.

[20] P. Nkomo and M. Coetzee, “Software development activities for secure
microservices,” in ICCSA. Springer, 2019, pp. 573–585.

[21] A. Nehme, V. Jesus, K. Mahbub, and A. Abdallah, “Securing microser-
vices,” IT Professional, vol. 21, no. 1, pp. 42–49, 2019.

[22] M. Wasson, “Monitoring a microservices architecture in Azure Kuber-
netes Service (AKS),” https://rb.gy/xzlm95, 2020, accessed: 2021-04-15.

[23] Q. Nguyen and O. Baker, “Applying spring security framework and
oauth2 to protect microservice architecture api,” Journal of Software,
pp. 257–264, 2019.

[24] O. Baker and Q. Nguyen, “A novel approach to secure microservice
architecture from owasp vulnerabilities,” in CITRENZ (2019).

[25] J. Kazanavičius and D. Mažeika, “Migrating legacy software to mi-
croservices architecture,” in eStream. IEEE, 2019, pp. 1–5.

[26] W. Smith, T. Moyer, and C. Munson, “Curator: provenance management
for modern distributed systems,” in TaPP, 2018.

[27] M. A. Jarwar, S. Ali, M. G. Kibria, S. Kumar, and I. Chong, “Exploiting
interoperable microservices in web objects enabled internet of things,”
in ICUFN. IEEE, 2017, pp. 49–54.

[28] M. Camilli, C. Bellettini, L. Capra, and M. Monga, “A formal framework
for specifying and verifying microservices based process flows,” in
SEFM. Springer, 2017, pp. 187–202.

[29] A. A. Yavuz and P. Ning, “BAF: an efficient publicly verifiable secure
audit logging scheme for distributed systems,” in ACSAC, 2009, pp.
219–228.

[30] B. Böck, D. Huemer, and A. M. Tjoa, “Towards more trustable log files
for digital forensics by means of “trusted computing”,” in AINA 2010.
IEEE Computer Society, 2010, pp. 1020–1027.

[31] R. Accorsi, “Bbox: A distributed secure log architecture,” in EuroPKI,
2010, pp. 109–124.

[32] A. J. Lee, P. Tabriz, and N. Borisov, “A privacy-preserving interdomain
audit framework,” in WPES, 2006, pp. 99–108.

[33] J. G. Cederquist, R. Corin, M. A. C. Dekker, S. Etalle, J. I. den Hartog,
and G. Lenzini, “Audit-based compliance control,” Int. J. Inf. Secur.,
vol. 6, no. 2-3, pp. 133–151, 2007.

[34] R. Corin, S. Etalle, J. I. den Hartog, G. Lenzini, and I. Staicu, “A logic
for auditing accountability in decentralized systems,” in FAST 2004,
2004, pp. 187–201.

[35] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely, “Towards a theory
of accountability and audit,” in ESORICS 2009, 2009, pp. 152–167.

[36] J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic, “Evidence-based
audit,” in CSF 2008, 2008, pp. 177–191.

[37] S. Etalle and W. H. Winsborough, “A posteriori compliance control,” in
SACMAT 2007, 2007, pp. 11–20.

[38] F. Bavera and E. Bonelli, “Justification logic and audited computation,”
J. Log. Comput, vol. 28, no. 5, pp. 909–934, 2015.

[39] W. Ricciotti and J. Cheney, “Strongly normalizing audited computation,”
arXiv preprint arXiv:1706.03711, 2017.

[40] W. Ricciotti, “A core calculus for provenance inspection,” in PPDP.
ACM, 2017, pp. 187–198.

[41] M. Herschel, R. Diestelkämper, and H. B. Lahmar, “A survey on
provenance: What for? what form? what from?” The VLDB Journal,
vol. 26, no. 6, pp. 881–906, 2017.

[42] P. Buneman and W.-C. Tan, “Data provenance: What next?” ACM
SIGMOD Record, vol. 47, no. 3, pp. 5–16, 2019.

[43] M. Gordon, J. Eikenberry, A. Eden, J. Perkins, and M. Rinard, “Precise
and comprehensive provenance tracking for android devices,” Tech.
Rep., 2019.

[44] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer,
and J. Bacon, “Practical whole-system provenance capture,” in SoCC.
ACM, 2017, pp. 405–418.

[45] F. Capobianco, C. Skalka, and T. Jaeger, “ACCESSPROV: Tracking the
provenance of access control decisions,” in TaPP, 2017.

1362

