
Instrumenting Microservices for Concurrent Audit
Logging: Beyond Horn Clauses

Nicolas D. Ahn
Dept. of Computer Science

University of the Pacific
Stockton, CA, USA

n ahn2@u.pacific.edu

Sepehr Amir-Mohammadian
Dept. of Computer Science

University of the Pacific
Stockton, CA, USA

samirmohammadian@pacific.edu

Abstract—Instrumenting legacy code is an effective approach
to enforce security policies. Formal correctness of this approach
in the realm of audit logging relies on semantic frameworks
that leverage information algebra to model and compare the
information content of the generated audit logs and the program
at runtime. Previous work has demonstrated the applicability of
instrumentation techniques in the enforcement of audit logging
policies for systems with microservices architecture. However, the
specified policies suffer from the limited expressivity power as
they are confined to Horn clauses being directly used in logic
programming engines. In this paper, we explore audit logging
specifications that go beyond Horn clauses in certain aspects, and
the ways in which these specifications are automatically enforced
in microservices. In particular, we explore an instrumentation
tool that rewrites Java-based microservices according to a JSON
specification of audit logging requirements, where these logging
requirements are not limited to Horn clauses. The rewritten set
of microservices are then automatically enabled to generate audit
logs that are shown to be formally correct.

Index Terms—Audit logs, concurrent systems, microservices,
programming languages, security

I. INTRODUCTION

Audit logging is a prevalent mechanism used to capture

the runtime events for the purpose of post-facto analysis,

user accountability, diagnostics, security in-depth, etc. In this

regard, enabling systems to generate necessary and sufficient

logs plays a crucial role to meet the goals of audit logging.

However, inadequate audit logging has been recognized as

a common problem in software development [1], [2]. While

the audit log inadequacy problem can be solved by naively

recording massive volume of information at runtime, this

approach incurs inefficiency in performance and response to

different security incidents [3]. For example, industrial control

systems may suffer from the lack of monitoring audit logs in

realtime to identify the security breaches [4]. Correctness of

audit logging ensures to only record the necessary information.

Information-algebraic [5] models have been used within the

last decade to provide semantic frameworks for audit logging.

This has been accomplished by interpreting audit logs as well

as the runtime structure of processes as information-algebraic

elements, intuitively reflecting on their information content.

Correct audit logging relies on this algebraic interpretation

by comparing the information content of audit logs vs. the

programs at runtime. Using this semantic framework, an

implementation model has been proposed for linear processes

that ensures correct audit logging, leveraging program instru-

mentation techniques [6]. The same framework has also been

employed to identify and analyze direct information flows in

Java-like settings [7], [8]. This semantic framework has also

inspired the study of audit logging correctness in concurrent

systems [9], which facilitates to log an event if one or more

trigger events have occurred on the same or other concurrent

components. The audit logging requirements can be specified

with Horn clauses, where each event is a call to a function

in a concurrent component, associated with its contextual

information, e.g., the time of occurrence.

Using microservices has become a popular approach in ap-

plication development in recent years, and many organizations

report success in its adoption [10]. Some surveys show more

than 70% of partial or full adoption worldwide in recent years

[11]. In this approach, a system is decomposed into multiple

standalone loosely-coupled components, called microservices.

Each microservice has its own database, and can run on a

separate machine, VM, or container. Microservices commonly

communicate with each other through RESTful APIs. The

accommodated modularity by a microservices-based system

provides better maintainability which results in improved se-

curity, feature updates, and the ability to continue operating (at

least partially) despite the failure of one or more components.

Microservices-based applications are architecturally concur-

rent and thus are good candidates to study the effectiveness of

the aforementioned framework for audit logging in concurrent

environments.

Based on the implementation model for audit logging in

concurrent systems [9], in a previous work [12] we have

described an instrumentation tool for Java microservices that

are built on Spring framework. The tool supports audit logging

requirements that can be specified by Horn clauses, according

to which the instrumentation tool modifies different microser-

vices so that concurrent audit logging is supported by the

whole system. To accomplish this, the instrumented services

may contact a Prolog engine to communicate the Horn clause

specification of the logging requirements as well as the trigger

and logging events. The Prolog engine is used to deduce

whether logging in a certain microservice must take place.

In this paper, we go beyond Horn clauses to specify audit

1762

2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-6654-8810-5/22/$31.00 ©2022 IEEE
DOI 10.1109/COMPSAC54236.2022.00280

Fig. 1: An Example MRS.

logging requirements and study a sequel to the aforementioned

instrumentation tool, where we can use a more expressive

class of audit logging requirements to specify the conditions

upon which logging must happen. The formal implementation

model of correct audit logging in concurrent systems with the

extended audit logging requirements is described elsewhere

[13]. Our proposed tool for Java microservices relies on

this implementation model. Since audit logging requirements

are extended beyond Horn clauses, our tool cannot simply

communicate the logging requirements directly to a Prolog

engine. We propose an algorithm through which Prolog is used

to deduce intermediary candidate events to be logged and filter

out the ones that do not satisfy logging preconditions.

In the following, we describe an illustrative example that

demonstrates the need to go beyond Horn clauses to specify

audit logging requirements.

Example: Microservices-based medical records system.
Let’s consider a medical records system (MRS) with microser-

vices architecture. Among numerous services of such system,

this example assumes the existence of at least the following: 1)

A front-end service that authenticates the users and multiplexes

their queries to the back-end services, 2) an authorization

system that controls access to system resources, and 3) a

patient service that manages patient information. Figure 1

demonstrates these microservices in a high-level manner. One

common authorization-related operation in healthcare systems

is to “break-the-glass” [14] in critical scenarios, which refers

to accessing certain information (e.g., patient medical history)

without any mediating authorization checks. After a user

breaks the glass, actions of that user is recorded in the log

for a posteriori analysis and establish user accountability. A

first attempt to specify the policy could be “Store in the log all
accesses to patient medical history by a user who has already
broken the glass”. This policy can be specified in Horn clause

logic, and for which previous work proposes an implementa-

tion model [9] and a tool for Java-based microservices [12].

However, the aforementioned policy entails to log all such

accesses indefinitely. In reality, breaking the glass is de-

activated once the critical situation is resolved. Therefore,

we may consider some dual capability “mend-the-glass” that

restores access control and enforces it fully, if the glass is

already broken. Having this capability, the example break-the-

glass policy can be restated as follows: “Store in the log all
accesses to patient medical history by a user who has already
broken the glass and has not mended it afterwards”. This

updated more realistic specification goes beyond Horn clauses

in expressivity.

Therefore, a compelling next step is to consider a more

powerful instrumentation tool to implement logging speci-

fications that support extended preconditions like the one

discussed above. Our instrumentation tool relies on models of

correct audit logging which support more expressive classes

of logging specifications.

Paper outline. The paper proceeds as follows. In Section II,

we briefly review the implementation model of audit logging

in concurrent systems, discussing an instrumentation algorithm

for systems in π-calculus. In Section III, we discuss and

compare our tool to instrument microservices in Java Spring

vs. the earlier tool in this realm. In addition, we present

a demo of an example microservices-based MRS, and its

instrumentation by our tool. Section IV discusses the related

work, and Section V concludes the paper.

II. A BRIEF REVIEW OF THE INSTRUMENTATION MODEL

In [13], we have explored the full formalization of the

implementation model for instrumenting concurrent systems

that guarantees the correctness of audit logs, according to

logging specifications that go beyond Horn clauses. In this

section, we review this model briefly.

A. Source System Model

The source system Π is a concurrent program, modeled in π-

calculus [15]. Top-level components of Π, denoted by A, are

called top-level agents. Top-level agents execute in parallel,

and communicate among themselves as their functionality

dictates. A consists of internal modules and/or functions,

modeled as subagents BA. As part of the definition of the

source system, we assume the existence of codebases CU and

CL that include definitions of the form A(x1, · · · , xn) � · · ·
and BA(x1, · · · , xn) � · · · resp.

B. A Class of Logging Specifications

Horn clause logic has been used to specify audit logging

requirements in previous work [12], where certain events must

take place so that audit logs are generated. In this paper,

we go beyond Horn clauses in our implementation model to

help specify not only the necessity of having certain events to

occur, but also to ensure that another group of events do not

take place. In this respect, we define a class of specifications

that assert temporal relations among the events that must or

must not transpire in different components (top-level agents)

of the system. Using this extended class of specifications, a

particular event must be logged, provided that a certain set

of events have taken place and another set of events have

not. We would call these different sets of events positive and

negative triggers, resp. We use Speclog to denote this class

of specifications. In Speclog , each event is modeled as a sub-

agent invocation, i.e., a module within one of the agents of

the system. Figure 2 depicts the structure of specifications in

Speclog . Call(t, A,B, xs) asserts the event of invoking sub-

agent BA at time t with list of parameters xs . ϕ and ψ′
j are

1763

∀t0, · · · , tn, xs0 , · · · , xsn .Call(t0, A0, B0, xs0)

n∧

i=1

(
Call(ti, Ai, Bi, xsi) ∧ ti <

t0
) ∧ ϕ(t0, · · · , tn) ∧ ϕ′

(xs0 , · · · , xsn)

m∧

j=1

(∀t′j , ysj . ψj(xs0, · · · , xsn, ysj) ∧

ψ
′
j(t0, · · · , tn, t

′
j) =⇒ ¬Call(t

′
j , A

′
j , B

′
j , ysj)

)
=⇒ LoggedCall(A0, B0, xs0)

Fig. 2: Structure of a Speclog logging specification.

CL(Authorization)(breakTheGlass) = [breakTheGlass
Authorization � P] for some P

CL(Authorization)(mendTheGlass) = [mendTheGlass
Authorization � P

′
] for some P

′

CL(Patient)(getMedicalHistory) = [getMedicalHistory
Patient � Q] for some Q

∀t0, t1, p, u .Call(t0, Patient, getMedicalHistory, [p, u]) ∧

Call(t1, Authorization, breakTheGlass, [u]) ∧ t1 < t0 ∧ (∀t2 . t2 < t0 ∧ t1 < t2 =⇒

¬Call(t2, Authorization, mendTheGlass, [u])) =⇒

LoggedCall(Patient, getMedicalHistory, [p, u])

Fig. 3: Example logging specification for an MRS.

possibly empty conjunctive sequence of literals of the form

ti < tj . ϕ′ and ψj are possibly empty conjunctive sequence

of literals as well. A0 is called a logging event agent, whereas

other Ais are called positive trigger agents. A′
js are called neg-

ative trigger agents. Similarly, logging event sub-agent refers

to B0, and other Bis are called positive trigger sub-agents. B′
js

are called negative trigger sub-agents. Logging preconditions
are predicates Call(ti, Ai, Bi, x̃) for all i ∈ {1, · · · , n} and

Call(tj , A
′
j , B

′
j , ysj) for all j ∈ {1, · · · ,m}.

For example, in the microservices-based MRS, described in

Figure 1, each microservice, including Authorization and

Patient, is a top-level agent in Π. Authorization may

include modules to break and mend the glass, and Patient

may have a functionality to read patient medical history. These

functionalities are defined as part of CL (Figure 3). Moreover,

Figure 3 describes the logging specification in Speclog that

is associated with the break-the-glass policy. In this logical

specification, t0, t1 and t2 are timestamps, and t1 precedes t0.

p refers to the patient identifier, and u is the user identifier

who breaks the glass and attempts to read the medical history

of p at a later time. Additionally, logging is preconditioned on

the fact that the glass is not mended in between the events of

breaking the glass and gaining access to the patient medical

data. t2 is the timestamp of the negative trigger, i.e., mend-

the-glass operation.

C. Target System Model

The instrumentation algorithm maps a Π system to a tar-

get system, denoted by Πlog. Runtime environment of Πlog

includes a timing counter t, Δ that returns the set of logging

preconditions transpired in a given agent, Σ that returns the

set of logging preconditions that have transpired in the triggers

of a given agent, and Λ that stores the audit logs for a given

agent. The preconditions in Σ must be communicated between

a given agent and all triggers agents. Certain prefixes are

added to Πlog to facilitate storage and retrieval of information

to these runtime components: 1) callEvent(A,B, x̃) updates

Δ(A) with predicate Call(t, A,B, x̃), 2) addPrecond(x,A)
updatesΣ(A) with precondition x, 3) sendPrecond(x,A) con-

verts Δ(A) to a transferable object and sends it though

link x, and 4) emit(A,B, x̃) studies the derivability of

C′
L(Authorization)(breakTheGlass) =

[
breakTheGlass

Authorization
(u) �

callEvent(Authorization, breakTheGlass, [u]).P
] C′

L(Authorization)(mendTheGlass) =

[
mendTheGlass

Authorization
(u) � callEvent(Authorization, mendTheGlass, [u]).P ′]

C′
L(Patient)(getMedicalHistory) =

[
getMedicalHistory

Patient
(p, u) �

callEvent(Patient, getMedicalHistory, [p, u]). ¯cPA.cPA(f).addPrecond(f, Patient).

emit(Patient, getMedicalHistory, [p, u]).Q
] C′

L(Authorization)(DPA) =

[
D

Authorization
PA (cPA) � cPA.sendPrecond(cPA, Authorization).D

Authorization
PA (cPA)

]

Fig. 4: Example Instrumentation of the MRS.

LoggedCall(A,B, x̃) and accordingly Λ(A) is updated with

this predicate.

D. Instrumentation Algorithm

Given a logging specification LS ∈ Speclog , algorithm I
translates a Π-system into a Πlog-system with concurrent audit

logging capabilities to support LS . In the following we briefly

point out main aspects of how I works.

If Ai is a logging event agent and Aj is a positive or nega-

tive trigger agent, a fresh link cij is added between them. This

link is used to communicate locally transpired trigger events

that are stored in trigger agents’ Δ component. sendPrecond
and addPrecond prefixes are used for this purpose.

I inserts prefix callEvent at the starting point of each

negative/positive trigger sub-agent. This ensures storing trigger

events in Δ.

callEvent is also inserted at the starting point of logging

event sub-agents to capture logging events in Δ component of

the corresponding agents. In addition, addPrecond is inserted

to notify all positive/negative trigger agents to send their

trigger events through the established cij link to the logging

event tigger. The received trigger events are then stored in Σ
component of the logging event agent. Finally, the logging

event must check if the invocation of logging event sub-agent

will be logged in Λ. For this purpose, emit is inserted.

Each positive/negative trigger Aj must be able to respond

to the requests by some logging event agent Ai on the cij link.

To this end, I introduces new sub-agent Dij in codebase of

Aj that indefinitely listens on that link and returns the content

of Δ on the same link. This is accomplished by sendPrecond
prefix.

Having the definitions of Figure 3 for an example MRS,

Figure 4 demonstrates the changes applied by the instru-

mentation algorithm. I modifies the definition of sub-agents

breakTheGlassAuthorization, mendTheGlassAuthorization and

getMedicalHistoryPatient by injecting proper prefixes at

their starting points. In addition, a new link cPA is introduced

between Authorization and Patient agents, and a new sub-

agent DAuthorization
PA is added that listens on cPA indefinitely for

requests from Patient and responds with locally transpired

trigger events, i.e., invocations to breakTheGlass (positive

trigger event) and mendTheGlass (negative trigger event).

III. INSTRUMENTING MICROSERVICES FOR AUDIT

LOGGING

In this section, we discuss the implementation details of the

instrumentation algorithm described in Section II, customized

1764

for microservices-based applications. The implemented tool,

LogInst.v2 [16], is an extension of LogInst [17] de-

scribed in [12]. Our review of LogInst.v2 is followed

by a demo on the MRS example. LogInst.v2 (similar to

LogInst) treats each microservice as an agent of the con-

current application. Moreover, each method of a microservice

plays the role of a sub-agent of the agent represented by that

microservice.

A. LogInst

In what follows we briefly describe how LogInst works.

The reader is referred to [12] for more details. LogInst
receives logging specification in JSON format along with the

source code of microservices written in Java Spring frame-

work, and applies certain modifications to those microservices

such that the audit logging is supported correctly according to

the formal specification. LogInst parses JSON specifications

that lack negative triggers and are translatable to Horn clauses.

In this regard, the logging event microservice is modified to

launch SWI Prolog [18] engine in parallel to its main process.

The logging event microservice communicates the logging

specifications with the engine and queries the engine to infer

whether certain events must be logged.

LogInst may add one or more repositories to a mi-

croservice. There are three different types of repositories: 1)

local-db stores local trigger or logging events in a mi-

croservice, 2) remote-db stores all trigger events associated

with a logging specification, and 3) log-db stores the audit

log. A trigger microservice may have access to local-db
only, whereas a logging event microservice acquires all

three types of repositories. local-db , remote-db, and

log-db implement Δ, Σ, and Λ components of the model

resp.

LogInst relies on AspectJ, in particular before aspects,

to extend the functionalities of trigger and logging event

microservices for audit logging purposes. Both trigger and

logging event methods are preceded by storing the event of

invoking that method in local-db. In addition, each logging

event method queries all trigger microservices to send the

content of their local-db and accumulates them in its

remote-db. Finally, the logging event microservice queries

the Prolog engine for all inferred logs and adds them in its

log-db. In order to query the logic engine, the logging event

microservice communicates the contents of local-db and

remote-db with the engine first. These interactive steps

implement callEvent, addPrecond, and emit prefixes in I1.

As mentioned above, a logging event microservice needs

to query all trigger microservices for the content of their

local-db repository. This is facilitated by LogInst
through the addition of a REST controller in each trigger

microservice that listens indefinitely on a specific URL for

incoming queries from the logging event microservice. In ad-

dition, LogInst extends the logging event microservice with

1Note that emit in LogInst is limited to querying Prolog based on Horn
clause specifications of audit logging only, where as emit described in Section
II goes beyond Horn clauses.

∀t0, · · · , tn, xs0 , · · · , xsn .Call(t0, A0, B0, xs0)
n∧

i=1

(
Call(ti, Ai, Bi, xsi) ∧ ti <

t0
) ∧ ϕ(t0, · · · , tn) ∧ ϕ′

(xs0 , · · · , xsn) =⇒ LG(A0, B0, t0, · · · , tn, xs0 , · · · , xsn)

Fig. 5: Intermediary clause structure.

a web client to send such queries to the trigger microservices

asynchronously.

B. LogInst.v2

Structurally, LogInst.v2 instruments microservices sim-

ilar to LogInst, i.e., it adds repositories, REST controllers,

web clients and API to communicate with Prolog in the same

style as the earlier version. In what follows, we describe the

major ways in which LogInst.v2 differs from LogInst
to support more expressive logging specifications.

LogInst.v2 treats negative trigger microservices similar

to positive ones, i.e., each negative trigger is extended with

local-db repository, and upon transpiring a negative trigger

event, the event is stored in that repository. Moreover, each

negative trigger microservice is extended with a REST con-

troller, similar to positive trigger microservices, that responds

with the content of the local-db repository.

LogInst.v2 differs from LogInst mainly in deal-

ing with logging specifications. In contrast to LogInst,

LogInst.v2 cannot translate logging specifications to Horn

clauses and communicate them with the Prolog engine, due

to higher expressivity of the specifications. These more ex-

pressive specifications are still passed to the instrumenting

tool in JSON. LogInst.v2 parses the JSON specification

which specifies logical rules of the form given in Figure 2.

LogInst.v2 instruments the logging event microservices to

initially redact the negative triggers and build intermediary

Horn clauses of the form depicted in Figure 5. These clauses

are communicated with the Prolog engine.

Logging event microservice is instrumented in the same

style as LogInst to add local events to local-db, and

reach out to trigger microservices to store positive and negative

trigger events in its remote-db. However, the next few steps

differ from the one supported by LogInst.

In order to decide whether an event must be logged by

a logging event microservice, the service sends query of the

form LG(A0, B0, t0, · · · , tn, xs0 , · · · , xsn) to the Prolog en-

gine. A0 and B0 are the only constant arguments of this query.

The resolution of the query is sent by the Prolog engine and

is temporarily stored in a container by the logging event mi-

croservice. Let’s call this data structure lg-list. This list is

the collection of all LG predicates, where each predicate refers

to a candidate event that could be potentially logged. Next,

the microservice checks whether LoggedCall(A0, B0, xs0) is

derivable by studying the preconditions of every negative

trigger. In this regard, for each negative trigger microservice

and method pair (A′
j , B

′
j) (of Figure 2) it adds the clause given

in Figure 6 to the Prolog engine, i.e., LogInst.v2 adds m
clauses of the form given in Figure 6 to the engine.

The logging event microservice goes through each candidate

in lg-list and checks whether NegativeTrigger predicates

are derivable. The algorithm in Figure 7 describes logging

1765

∀t0, · · · , tn, xs0 , · · · , xsn , t′j , ysj . ψj(xs0, · · · , xsn, ysj) ∧ ψ′
j(t0, · · · , tn, t

′
j) ∧

Call(t
′
j , A

′
j , B

′
j , ysj) =⇒ NegativeTrigger(j, t0, · · · , tn, xs0 , · · · , xsn)

Fig. 6: The clause for the jth negative trigger.

for each candidate LG(A0, B0, t0, ..., tn, xs0, ..., xsn) in lg-list:
if NegativeTrigger(1, t0, ..., tn, xs0, ..., xsn) is derivable:
LoggedCall is not derivable. Continue with the next candidate.

if NegativeTrigger(2, t0, ..., tn, xs0, ..., xsn) is derivable:
LoggedCall is not derivable. Continue with the next candidate.

...
if NegativeTrigger(m, t0, ..., tn, xs0, ..., xsn) is derivable:
LoggedCall is not derivable. Continue with the next candidate.

LoggedCall is derivable. Add LoggedCall(A0,B0,xs0) to log-db.

Fig. 7: Pseudocode of LoggedCall inference.

event’s behavior to infer whether LoggedCall(A0, B0, xs0) is

derivable. Note that LogInst.v2 does not hard code any of

the negative trigger preconditions in the instrumented logging

event microservice. These preconditions are read from JSON

specification, translated to Horn clauses of the form given in

Figure 6, and communicated with the Prolog engine.

Figure 8 summarizes the communication differences be-

tween the instrumented logging event microservice and

the Prolog engine in LogInst vs. LogInst.v2. While

LogInst-instrumented logging event microservice commu-

nicates the logging specification with the Prolog engine, and

queries the engine for any potential logging, LogInst.v2-

instrumnted version does not do so due to higher expressivity

of the specifications. Instead, it creates an intermediary Horn

clause as well as a set of negative trigger clauses out of the

specification and communicates them with the Prolog engine.

When a logging event transpires, that microservice queries

Prolog engine for all LG predicates, follows the pseudocode in

Figure 7, queries NegativeTrigger predicates, and accordingly

deduces whether the event must be logged.

C. Instrumenting example MRS with LogInst.v2

Section I discusses an oversimplified MRS consist-

ing of several microservices. In this section, we de-

scribe how LogInst.v2 instruments this system accord-

ing to the logging specification given in Figure 3. Struc-

turally LogInst.v2 modifies the microservices by adding

Fig. 8: Communication of the logging event microservice and logic
engine: LogInst vs. LogInst.v2.

Fig. 9: High-level architecture of example MRS after instrumentation
by LogInst and LogInst.v2 using the specification of Figure 3.

/* Intermediary Clause */
lg(patient-service, getPatientMedHistory, T0,T1,[U,P]) :-

funccall(T0, patient-service, getPatientMedHistory, [U, P]),
funccall(T1, authorization-service, breakTheGlass, [U]),
<(T1, T0),
==(U, user).

/* Single Negative Trigger Clause */
negative_trigger(1,T0,T1,[U,P]) :-

funccall(T2, authorization-service, mendTheGlass, [U]),
<(T2, T0),
<(T1, T2).

Fig. 10: The intermediary and the negative trigger clauses for the
example specification in Figure 3.

local-db repository to the Authorization microservice

(trigger), and all three types of repositories to the Patient

microservice (logging event). In addition, Patient service

runs Prolog engine in this own thread and communicates

different logical rules and facts with it. Authorization

microservice is extended with a REST controller that responds

to the Patient-side web client HTTP GET requests about its

local-db content. These architectural changes are depicted

in Figure 9. The reader is referred to [12] for more details on

these structural modifications. In the following, we focus on

the aspects that differ from LogInst’s output.

LogInst.v2 modifies Patient service to create an

intermediary clause and communicate it with Prolog en-

gine. Moreover, since there is a single negative trigger

(mendTheGlass) a single negative trigger clause is created

by the Patient service that can be used to ensure whether the

preconditions are met for that negative trigger. This rule is also

communicated with the Prolog engine. Figure 10 demonstrates

the intermediary and negative trigger clauses. Note that in the

presentation of these rules, each method’s full package/class

path is redacted for brevity.

Upon deciding to log an event, Patient service queries

Prolog for all instances of lg(patient-service,
getPatientMedHistory, T0, T1, [U,P]) and

stores the results in lg-list. Then, Patient service

follows the pseudocode in Figure 11 to infer whether

logging events must be logged. Note that Figure 11 depicts a

specialization of the general process described in Figure 7.

1766

for each candidate lg(patient-service, getPatientMedHistory,T0,T1,[U,P])}
in lg-list:

if negative_trigger(1,T0,T1,[U,P]) is derivable:
LoggedCall is not derivable. Continue with the next candidate.

LoggedCall is derivable. Add LoggedCall(patient-service,
getPatientMedHistory,[U,P]) to log-db.

Fig. 11: Example pseudocode of LoggedCall inference.

IV. RELATED WORK

As microservices have gained more popularity in the ap-

plication design and deployment in recent years, their safety

and security have been the focus of several studies, e.g., [19]–

[22]. Most commonly in the realm of audit logging, a central

approach has been considered, where a specific microservice

is responsible to collect all logging events [23], [24]. In partic-

ular, Elascale [25] is a monitoring system that is deployed as

an independent microservice. In contrast, Amir-Mohammadian

et al. [12] propose an instrumentation technique that enables

concurrent audit logging in different microservices. LogInst
[17] is the implementation of this instrumentation technique in

the context of Java Spring microservices. Formal correctness

of LogInst relies on information algebraic [5] semantics

of audit logging, originally explored in [9] for concurrent

systems.

Operating system-level and network-level monitoring has

been a commonplace trend in audit logging for microser-

vices. Examples include Amazon CloudeWatch [26], Nagios

[27], Microsoft Azure Kubernetes [28], and Spring Security

Framework [29]. Cinque et al. [30] propose a blackbox tracing

mechanism for monitoring microservices that does not involve

instrumentation.

In this paper, we propose a more powerful tool to sup-

port concurrent audit logging in microservices, whose formal

correctness relies on an implementation model on concurrent

systems [13].

V. CONCLUSION

In this paper, we have proposed an instrumentation tool for

Java Spring based microservices to enforce audit requirements,

whose logical specifications are not expressible by Horn clause

logic. Our implementation tool is an extension of an earlier

solution that supported specifications in Horn clauses. Our

tool receives the specification in JSON format, along with

the source code of microservices. It identifies the triggers and

logging events in the application, and accordingly instruments

them. As a case study, we discuss a microservices-based

medical records system that facilitates to deactivate controlling

access to patient medical information in critical scenarios and

to activate it at a later stage. The correctness of the instrumen-

tation tool relies on a formal model of the instrumentation that

guarantees the generated logs to be necessary and sufficient.

REFERENCES

[1] “CWE-778: Insufficient Logging,” https://rb.gy/2hhb5o, 2021, accessed:
2022-04-04.

[2] “Top 10-2017 A10-Insufficient Logging & Monitoring,”
https://rb.gy/mj1xpf, 2017, accessed: 2022-04-04.

[3] “CWE-779: Logging of Excessive Data,” https://rb.gy/myvjgc, 2021,
accessed: 2022-04-04.

[4] “Why Do Attackers Target Industrial Control Systems?”
https://rb.gy/ketznl, 2017, accessed: 2022-03-29.

[5] J. Kohlas and J. Schmid, “An algebraic theory of information: An
introduction and survey,” Information, vol. 5, no. 2, pp. 219–254, 2014.

[6] S. Amir-Mohammadian, S. Chong, and C. Skalka, “Correct audit log-
ging: Theory and practice,” in International Conference on Principles
of Security and Trust (POST), April 2016.

[7] S. Amir-Mohammadian and C. Skalka, “In-depth enforcement of dy-
namic integrity taint analysis,” in PLAS, 2016.

[8] C. Skalka, S. Amir-Mohammadian, and S. Clark, “Maybe tainted data:
Theory and a case study,” J. Comput. Secur., vol. 28, no. 3, pp. 295–335,
April 2020.

[9] S. Amir-Mohammadian and C. Kari, “Correct audit logging in concur-
rent systems,” ENTCS, vol. 351, pp. 115–141, September 2020.

[10] “O’Reilly’s Microservices Adoption in 2020 Report Finds that 92%
of Organizations are Experiencing Success with Microservices,”
https://rb.gy/frajim, 2020, accessed: 2022-03-29.

[11] “Organizations’ adoption level of microservices worldwide in 2021,”
https://rb.gy/kanclv, 2022, accessed: 2022-03-29.

[12] S. Amir-Mohammadian and A. Y. Zowj, “Towards concurrent audit
logging in microservices,” in Proceedings of the 45th Annual IEEE
Computers, Software, and Applications Conference (COMPSAC 2021),
July 2021, pp. 1357–1362.

[13] S. Amir-Mohammadian, “Correct audit logging in concurrent systems
with negative triggers,” University of the Pacific, Tech. Rep., June 2021.

[14] P. Matthews and H. Gaebel, “Break the glass,” in HIE Topic Series.
Healthcare Information and Management Systems Society, 2009.

[15] J. Parrow, “An introduction to the π-calculus,” in Handbook of Process
Algebra. Elsevier, 2001, pp. 479–543.

[16] N. D. Ahn and S. Amir-Mohammadian, “LogInst.v2: Instrument-
ing Java Microservices for Audit Logging: Beyond Horn Clauses,”
https://rb.gy/vbxtpq, 2022.

[17] S. Amir-Mohammadian and A. Y. Zowj, “LogInst: Instrumenting Mi-
croservices of Java Web Apps for Auditing,” https://rb.gy/h5gihs, 2020.

[18] “SWI Prolog,” https://rb.gy/nkujfv, accessed: 2022-04-03.
[19] N. Mateus-Coelho, M. Cruz-Cunha, and L. G. Ferreira, “Security in

microservices architectures,” Procedia Computer Science, vol. 181, pp.
1225–1236, 2021.

[20] P. Nkomo and M. Coetzee, “Software development activities for secure
microservices,” in ICCSA. Springer, 2019, pp. 573–585.

[21] A. Nehme, V. Jesus, K. Mahbub, and A. Abdallah, “Securing microser-
vices,” IT Professional, vol. 21, no. 1, pp. 42–49, 2019.

[22] D. Yu, Y. Jin, Y. Zhang, and X. Zheng, “A survey on security issues
in services communication of microservices-enabled fog applications,”
Concurrency and Computation: Practice and Experience, vol. 31, no. 22,
p. e4436, 2019.

[23] A. Barabanov and D. Makrushin, “Security audit logging in
microservice-based systems: survey of architecture patterns,” arXiv
preprint arXiv:2102.09435, 2021.

[24] J. Kazanavičius and D. Mažeika, “Migrating legacy software to mi-
croservices architecture,” in eStream. IEEE, 2019, pp. 1–5.

[25] H. Khazaei, R. Ravichandiran, B. Park, H. Bannazadeh, A. Tizghadam,
and A. Leon-Garcia, “Elascale: autoscaling and monitoring as a service,”
arXiv preprint arXiv:1711.03204, 2017.

[26] “Amazon CloudWatch,” https://rb.gy/da5tsp, 2022, accessed: 2022-04-
04.

[27] “Nagios,” https://www.nagios.org, 2022, accessed: 2022-04-04.
[28] M. Wasson, “Monitoring a microservices architecture in Azure Kuber-

netes Service (AKS),” https://rb.gy/xzlm95, 2020, accessed: 2022-04-04.
[29] Q. Nguyen and O. Baker, “Applying spring security framework and

oauth2 to protect microservice architecture api,” Journal of Software,
pp. 257–264, 2019.

[30] M. Cinque, R. Della Corte, and A. Pecchia, “Microservices monitoring
with event logs and black box execution tracing,” IEEE Transactions on
Services Computing, 2019.

1767

