
The Theory and Practice of Correct Audit Logging

Sepehr Amir-Mohammadian Stephen Chong Christian Skalka

October 20, 2015

Abstract

Auditing has become increasingly important to the theory and practice of cyber security. How-
ever, in systems where auditing is used, programs are typically instrumented to generate audit
logs using manual, ad-hoc strategies. This is a potential source of error even if log audit-
ing techniques are formal, since the relation of the log itself to program execution is unclear.
This work focuses on provably correct program rewriting algorithms for instrumenting formal
logging specifications. Correctness guarantees that the execution of an instrumented program
produces sound and complete audit logs, properties defined by an information containment re-
lation between logs and the program’s logging semantics. Logging semantics is sufficiently
general, so that the guarantees extend to various approaches of audit logging. As a case study,
we demonstrate the incorporation of the proposed techniques and features in healthcare infor-
matics. In particular, we consider auditing for break the glass policies, wherein authorization is
replaced by auditing in emergency conditions.

Contents

1 Introduction 1
1.1 Summary and Main Technical Results . 4
1.2 Background and Terminology . 5
1.3 A Motivating Example from Practice . 7
1.4 Threat Model . 8

2 A Semantics of Audit Logging 9
2.1 Introduction to Information Algebra . 9
2.2 Logging Specifications . 11
2.3 Correctness Conditions for Audit Logs . 12
2.4 Correct Logging Instrumentation is a Safety Property 14
2.5 Implementing Logging Specifications with Program Rewriting 15

3 Languages for Logging Specifications 18
3.1 Support for Various Approaches . 18

3.1.1 First Order Logic (FOL) . 18
3.1.2 Relational Database . 26

3.2 Transforming and Combining Audit Logs . 31

4 Rewriting Programs with Logging Specifications 34
4.1 Source Language . 35
4.2 Specifications Based on Function Call Properties 37
4.3 Target Language . 38
4.4 Program Rewriting Algorithm . 40
4.5 Edit Automata Enforcement of Calls Specifications 44

5 Case Study on a Medical Records System 46
5.1 Break the Glass Policies for OpenMRS . 48

5.1.1 Code Instrumentation . 50
5.1.2 Proof Engine . 51
5.1.3 Writing and Storing the Log . 52

i

CONTENTS ii

5.2 Reducing Memory Overhead . 53
5.2.1 Language with Memory Overhead Mitigation 56
5.2.2 Correctness of Memory Overhead Mitigation 60
5.2.3 An Example . 66

6 Related Work and Conclusion 69
6.1 Related Work . 69
6.2 Conclusion . 71

List of Figures

2.1 Concept diagram: Logging specification and correctness of audit logs. 13

4.1 Edit automata that enforces ideal instrumentation 44

5.1 Module builder . 47
5.2 System architecture . 48
5.3 Precondition rules for Λ′log. 58
5.4 Refine algorithm . 61

iii

Chapter 1

Introduction

Retrospective security is the enforcement of security, or detection of security violations, after

program execution [1, 2, 3]. Many real-world systems use retrospective security. For example,

the financial industry corrects errors and fraudulent transactions not by proactively preventing

suspicious transactions, but by retrospectively correcting or undoing these problematic transac-

tions. Another example is a hospital whose employees are trusted to access confidential patient

records, but who might (rarely) violate this trust [4]. Upon detection of such violations, security

is enforced retrospectively by holding responsible employees accountable [5].

Retrospective security cannot be achieved entirely by traditional computer security mech-

anisms, such as access control, or information-flow control. Reasons include that detection

of violations may be external to the computer system (such as consumer reports of fraudu-

lent transactions, or confidential patient information appearing in news media), the high cost

of access denial (e.g., preventing emergency-room physicians from accessing medical records)

coupled with high trust of systems users (e.g., users are trusted employees that rarely violate

this trust) [6]. In addition, remediation actions to address violations may also be external to the

computer system, such as reprimanding employees, prosecuting law suits, or otherwise holding

1

CHAPTER 1. INTRODUCTION 2

users accountable for their actions [5].

Auditing underlies retrospective security frameworks and has become increasingly impor-

tant to the theory and practice of cyber security. By recording appropriate aspects of a computer

system’s execution an audit log (and subsequent examination of the audit log) can enable de-

tection of violations, and provide sufficient evidence to hold users accountable for their actions

and support other remediation actions. For example, an audit log can be used to determine

post facto which users performed dangerous operations, and can provide evidence for use in

litigation.

However, despite the importance of auditing to real-world security, relatively little work

has focused on the formal foundations of auditing, particularly with respect to defining and en-

suring the correctness of audit log generation. Indeed, correct and efficient audit log generation

poses at least two significant challenges. First, it is necessary to record sufficient and correct

information in the audit log. If a program is manually instrumented, it is possible for developers

to fail to record relevant events. Recent work showed that major health informatics systems do

not log sufficient information to determine compliance with HIPAA policies [7]. Second, an

audit log should ideally not contain more information than needed. While it is straightforward

to collect sufficient information by recording essentially all events in a computer system, this

can cause performance issues, both slowing down the system due to generating massive audit

logs, and requiring the handling of extremely large audit logs. Excessive data collection is a

key challenge for auditing [8, 9, 10], and is a critical factor in the design of tools that generate

and employ audit logs (e.g., spam filters [11]).

A main goal of this work is to establish a formal foundation for audit logging, especially

to establish general correctness conditions for audit logs. We define a general semantics of

audit logs using the theory of information algebra [12]. We interpret both program execution

traces and audit logs as information elements in an information algebra. A logging specification

CHAPTER 1. INTRODUCTION 3

defines the intended relation between the information in traces and in audit logs. An audit log

is correct if it satisfies this relation. A benefit of this formulation is that it separates logging

specifications from programs, rather than burying them in code and implementation details.

Separating logging specifications from programs supports clearer definitions and more di-

rect reasoning. Additionally, it enables algorithms for implementing general classes of logging

specifications. Our formal theory establishes conditions that guarantee enforcement of log-

ging specifications by such algorithms. As we will show, correct instrumentation of logging

specifications is a safety property, hence enforceable by security automata [13]. Inspired by re-

lated approaches to security automata implementation [14], we focus on program rewriting to

automatically enforce correct audit instrumentation. Program rewriting has a number of prac-

tical benefits versus, for example, program monitors, such as lower OS process management

overhead.

This approach would allow system administrators to define logging specifications which

are automatically instrumented in code, including legacy code. Implementation details and

matters such as optimization can be handled by the general program rewriting algorithm, not the

logging specification. Furthermore, establishing correctness of a program rewriting algorithm

provides an important security guarantee. Such an algorithm ensures that logging specifications

will be implemented correctly, even if the rewritten source code contains malicious code or

programmer errors.

We consider a case study of our approach, a program rewriting algorithm for correct instru-

mentation of logging specifications in OpenMRS [15], a popular open source medical records

software system. Our tool allows system administrators to define logging specifications which

are automatically instrumented in OpenMRS legacy code. Implementation details and opti-

mizations are handled transparently by the general program rewriting algorithm, not the logging

specification. Formal foundations ensure that logging specifications are implemented correctly

CHAPTER 1. INTRODUCTION 4

by the algorithm. In particular, we show how our system can implement “break the glass”

auditing policies.

1.1 Summary and Main Technical Results

In the following we informally introduce concepts and relevant terminology, discuss a motivat-

ing example, and identify our threat model. In Chapter 2 we define a semantics of auditing,

and establish conditions for correctness of audit rewriting algorithms. That is, we define what

it means for a program instrumentation to correctly log information. In Chapter 3, we study the

instantiations of the auditing semantics and transformation of these instantiations to each other.

In Chapter 4, we consider a particular class of logging specifications, present a rewriting algo-

rithm to support this class, and prove that this algorithm is correct. In Chapter 5, we discuss a

case study on health informatics, particularly OpenMRS system. We conclude with the related

work and the summary remarks in Chapter 6.

The main technical contributions of this work are as follows. In Chapter 2, we characterize

logging specifications and correctness conditions for audit logs, in a high-level manner using

information algebra. In particular, we obtain formal notions of soundness and completeness of

program rewriting for auditing (Definitions 2.5.2 and 2.5.3). In Chapter 3, we formulate infor-

mation algebras based on first-order logic (FOL) and relational algebra that are shown to satisfy

necessary conditions (Theorem 3.1.1 and Corollary 3.1.1) to enjoy information-algebraic prop-

erties, including a partial information order. We then leverage FOL-based information algebra

to define a formal semantics of program auditing (Definition 3.1.5). In Chapter 4, we prove

that a rewriting algorithm is sound and complete with respect to a specific class of logging

specifications (Theorem 4.4.2). This illustrates how our auditing semantics can be leveraged

to prove program instrumentation correctness for particular rewriting algorithms. In Chapter

5, we discuss the deployment of correct audit logging mechanism for OpenMRS system, and

CHAPTER 1. INTRODUCTION 5

propose techniques to reduce memory overhead.

1.2 Background and Terminology

In this Section we aim to establish terminology and concepts, both for use in the report and to

clarify under-appreciated details of auditing. We first summarize traditional goals of auditing,

in order to categorize typical application spaces.

Audit Logs as Evidence Many formal approaches to auditing consider how audit logs can

provide evidence for post-facto justification of resource access [16]. This evidence is usually

in the form of a proof of policy compliance, or supporting facts for such a proof. In such

settings, audit logs also include information to support accountability, e.g., to allow analyses to

determine who is responsible for policy violations.

Retrospective Dynamic Analysis Since an audit log provides a partial record of program

execution, it can be used to retrospectively analyze program execution, to detect security viola-

tions, or to find performance bottlenecks. The ability to perform retrospective dynamic analysis

is especially important when static analyses are undecidable (e.g., [17]), or impossible (e.g., due

to application-specific use of a framework [18]).

Surveillance and Accountability Surveillance is a prevalent security technique, where po-

tentially insecure actions are allowed but events are recorded for subsequent analysis. As a

real-world example, in a medical informatics scenario certain users may be given access to

sensitive patient information in case of an emergency, but users should be held accountable

post-facto in the event of a security violation (known as “break the glass policies”) [7]. Such

mechanisms have been identified as part of the solution for privacy and mobile security (aka

mhealth security) [19, 20].

CHAPTER 1. INTRODUCTION 6

Surveillance and accountability is supported by auditing, and leveraged to enhance existing

security models, e.g., access control and information flow models. Other authors have termed

this approach “optimistic security” [2].

To avoid confusion in our formal presentation and discussion we define some terminol-

ogy. These definitions are also intended to better isolate and describe elements of auditing, in

particular we note that auditing of processes typically involves two distinct policies: one for

generating the audit log itself, and one for analyzing the audit log.

We use the following terminology throughout the report.

An execution trace is a complete record of program execution in a formal operational se-

mantics.

An audit log is a record of program execution. The format of audit logs varies, but es-

sentially comprises the information derived from the full execution trace. A log query is any

question that can be asked of the audit log, though it is typically said that the program execu-

tion is “being audited” in this case. This reveals an implicit understanding that audit logs bear

a knowable relation with processes.

A logging specification specifies how audit logs should be generated, that is, what would be

the relation between the information contained in the execution trace and in the audit log. Log-

ging specifications should typically ensure that audit logs contain enough information, and in

an appropriate form, to answer a given log query (or set of log queries). A logging specification

is enforced by a program if execution of the program produces an appropriate audit log. In this

work we are interested in formally defining logging specifications, and automatically enforcing

them. A rewriting algorithm takes a logging specification and a program, and instruments the

program to enforce the logging specification. A rewriting algorithm may support only a limited

class of logging specifications.

An auditing policy is the combination of a log query and a logging specification. Thus,

CHAPTER 1. INTRODUCTION 7

an auditing policy describes both a logging specification to enforce, and a query to ask of the

resulting audit logs.

1.3 A Motivating Example from Practice

Although audit logs contain information about program execution, they are not just a straight-

forward selection of program events. Illustrative examples from practice include break the

glass policies used in electronic medical record systems [21]. These policies use access con-

trol to disallow care providers from performing sensitive operations such as viewing patient

records, however care providers can “break the glass” in an emergency situation to temporarily

raise their authority and access patient records, with the understanding that subsequent sensi-

tive operations will be logged and potentially audited. One potential accountability goal is the

following:

In the event that a patient’s sensitive information is inappropriately leaked, deter-

mine who accessed a given patient’s files due to “breaking the glass.”

Since it cannot be predicted a priori whose information may leak, this goal can be supported by

using an audit log that records all reads of sensitive files following glass breaking. To generate

correct audit logs, programs must be instrumented for logging appropriately, i.e., to implement

the following logging specification that we call LSH :

LSH : Record in the log all patient information file reads following a break the

glass event, along with the identity of the user that broke the glass.

If at some point in time in the future it is determined that a specific patient P’s information was

leaked, logs thus generated can be analyzed with the following query that we call LQH :

LQH : Retrieve the identity of all users that read P’s information files.

CHAPTER 1. INTRODUCTION 8

The specification LSH and the query LQH together constitute an auditing policy that directly

supports the above-stated accountability goal. Their separation is useful since at the time of

execution the information leak is unknown, hence P is not known. Thus while it is possible to

implement LSH as part of program execution, LQH must be implemented retrospectively.

It is crucial to the enforcement of the above accountability goal that LSH is implemented

correctly. If logging is incomplete then some potential recipients may be missed. If logging is

overzealous then bloat is possible and audit logs become “write only”. These types of errors

are common in practice [7]. To establish formal correctness of instrumentation for audit logs,

it is necessary to define a formal language of logging specifications, and establish techniques

to guarantee that instrumented programs satisfy logging specifications. That is the focus of this

work. Other work has focused on formalisms for querying logs [16, 22], however these works

presuppose correctness of audit logs for true accountability.

1.4 Threat Model

With respect to program rewriting (i.e., automatic techniques to instrument existing programs to

satisfy a logging specification), we regard the program undergoing instrumentation as untrusted.

That is, the program source code may have been written to avoid, confuse, or subvert the

automatic instrumentation techniques. We do, however, assume that the source code is well-

formed (valid syntax, well-typed, etc.). Moreover, we trust the compiler, the program rewriting

algorithm, and the runtime environment in which the instrumented program will ultimately be

executed. Non-malleability of generated audit logs, while important, is beyond the scope of

this work.

Chapter 2

A Semantics of Audit Logging

Our goal in this Chapter is to formally characterize logging specifications and correctness con-

ditions for audit logs. To obtain a general model, we leverage ideas from the theory of informa-

tion algebra [23, 12], which is an abstract mathematical framework for information systems.

In short, we interpret program traces as information, and logging specifications as functions

from traces to information. This separates logging specifications from their implementation in

code, and defines exactly the information that should be in an audit log. This in turn establishes

correctness conditions for audit logging implementations.

2.1 Introduction to Information Algebra

Information algebra is the algebraic study of the theory of information. In information algebra,

information is seen as a collection of separate elements. Each information element can be

queried for further refinement and also aggregated with other information elements. To this

end, the algebra consists of two domains: an information domain and a query domain. The

information domain Φ is the set of information elements that can be aggregated in order to build

more inclusive information elements. The query domainE is a lattice of querying sublanguages

9

CHAPTER 2. A SEMANTICS OF AUDIT LOGGING 10

in which the partial order relation among these sublanguages represents the granularity of the

queries. In order to aggregate and query the information elements, the following operations are

defined.

Definition 2.1.1 Any information algebra (Φ, E) includes two basic operators:

• Combination ⊗ : Φ × Φ → Φ: The operation X ⊗ Y combines (or, aggregates) the

information in elements X,Y ∈ Φ.

• Focusing⇒: Φ× E → Φ: The operation X⇒S isolates the elements of X ∈ Φ that are

relevant to a sublanguage S ∈ E, i.e. the subpart of X specified by S.

The two-sorted algebra (Φ, E) is an information algebra if the combination and focusing

operations defined in Definition 2.1.1 meet specific properties.

Definition 2.1.2 Any two-sorted algebra (Φ, E) with operators ⊗ : Φ × Φ → Φ and ⇒:

Φ× E → Φ is an information algerba iff the following properties hold:

• Φ is a semigroup under combination, i.e., associativity and commutativity hold for⊗ and

there exists a neutral element I ∈ Φ,

• Transitivity of focusing: (X⇒L)
⇒M

= X⇒L∩M for all X ∈ Φ and L,M ∈ E,

• Combination: (X⇒L ⊗ Y)
⇒L

= X⇒L ⊗ Y⇒L for all X,Y ∈ Φ and L ∈ E,

• Support: For all X ∈ Φ, there exists some L ∈ E such that X⇒L = X , and

• Idempotence: X ⊗X⇒L = X for all X ∈ Φ and L ∈ E.

Using the combination operator we can define a partial order relation on Φ to compare

the information contained in the elements of Φ. A partial ordering is induced on Φ by the

so-called information ordering relation ≤, where intuitively for X,Y ∈ Φ we have X ≤ Y

CHAPTER 2. A SEMANTICS OF AUDIT LOGGING 11

iff Y contains at least as much information as X , though its precise meaning depends on the

particular algebra.

Definition 2.1.3 X is contained in Y , denoted as X ≤ Y , for all X,Y ∈ Φ iff X ⊗ Y = Y .

Definition 2.1.4 We say that X and Y are information equivalent, and write X = Y , iff

X ≤ Y and Y ≤ X .

For a more detailed account of information algebra, the reader is referred to a definitive

survey paper [23].

2.2 Logging Specifications

Following [13], an execution trace τ = κ0κ1κ2 . . . is a possibly infinite sequence of configu-

rations κ that describe the state of an executing program. We deliberately leave configurations

abstract, but examples abound and we explore a specific instantiation for a λ-calculus in Chap-

ter 4. Note that an execution trace τ may represent the partial execution of a program, i.e. the

trace τ may be extended with additional configurations as the program continues execution. We

use metavariables τ and σ to range over traces.

We assume given a function b·c that is an injective mapping from traces to Φ. This mapping

interprets a given trace as information, where the injective requirement ensures that informa-

tion is not lost in the interpretation. For example, if σ is a proper prefix of τ and thus contains

strictly less information, then formally bσc ≤ bτc. We intentionally leave both Φ and b·c

underspecified for generality, though application of our formalism to a particular logging im-

plementation requires instantiation of them. We discuss an example in Chapter 3.

We let LS range over logging specifications, which are functions from traces to Φ. As for Φ

and b·c, we intentionally leave the language of specifications abstract, but consider a particular

CHAPTER 2. A SEMANTICS OF AUDIT LOGGING 12

instantiation in Chapter 3. Intuitively, LS (τ) denotes the information that should be recorded in

an audit log during the execution of τ given specification LS , regardless of whether τ actually

records any log information, correctly or incorrectly. We call this the semantics of the logging

specification LS .

We assume that auditing is implementable, requiring at least that all conditions for logging

any piece of information must be met in a finite amount of time. As we will show, this restriction

implies that correct logging instrumentation is a safety property [13].

Definition 2.2.1 We require of any logging specification LS that for all traces τ and informa-

tion X ≤ LS (τ), there exists a finite prefix σ of τ such that X ≤ LS (σ).

It is crucial to observe that some logging specifications may add information not contained

in traces to the auditing process. Security information not relevant to program execution (such

as ACLs), interpretation of event data (statistical or otherwise), etc., may be added by the log-

ging specification. For example, in the OpenMRS system [24], logging of sensitive operations

includes a human-understandable “type” designation which is not used by any other code. Thus,

given a trace τ and logging specification LS , it is not necessarily the case that LS (τ) ≤ bτc.

Audit logging is not just a filtering of program events.

2.3 Correctness Conditions for Audit Logs

A logging specification defines what information should be contained in an audit log. In this

section we develop formal notions of soundness and completeness as audit log correctness

conditions. We use metavariable L to range over audit logs. Again, we intentionally leave the

language of audit logs unspecified, but assume that the function b·c is extended to audit logs,

i.e. b·c is an injective mapping from audit logs to Φ. Intuitively, bLc denotes the information in

L, interpreted as an element of Φ.

CHAPTER 2. A SEMANTICS OF AUDIT LOGGING 13

Full program execution trace τLogging specification LS

LS (τ) The information that should be logged in τ

bLc The information contained in audit log L

Soundness
Completeness

LS (τ) subsumes bLc
bLc subsumes LS (τ)

Figure 2.1: Concept diagram: Logging specification and correctness of audit logs.

An audit log L is sound with respect to a logging specification LS and trace τ if the log

information is contained in LS (τ). Similarly, an audit log is complete with respect to a log-

ging specification if it contains all of the information in the logging specification’s semantics.

Crucially, both definitions are independent of the implementation details that generate L.

Definition 2.3.1 Audit log L is sound with respect to logging specification LS and execution

trace τ iff bLc ≤ LS (τ).

Definition 2.3.2 Audit log L is complete with respect to logging specification LS and execution

trace τ iff LS (τ) ≤ bLc.

Figure 2.1 illustrates graphically the relations of soundness and completeness of audit logs

with respect to the semantics of logging.

The relation to log queries. As discussed in Section 1.3, we make a distinction between

logging specifications such as LSH which define how to record logs, and log queries such as

LQH which ask questions of logs, and our notions of soundness and completeness apply strictly

CHAPTER 2. A SEMANTICS OF AUDIT LOGGING 14

to logging specifications. However, any logging query must assume a logging specification

semantics, hence a log that is demonstrably sound and complete provides the same answers

on a given query that an “ideal” log would. This is an important property that is discussed in

previous work, e.g. as “sufficiency” in [25].

2.4 Correct Logging Instrumentation is a Safety Property

In case program executions generate audit logs, we write τ ; L to mean that trace τ generates

L, i.e. τ = κ0 . . . κn and logof (κn) = L where logof (κ) denotes the audit log in configuration

κ, i.e. the residual log after execution of the full trace. Ideally, information that should be

added to an audit log, is added to an audit log, immediately as it becomes available. This ideal

is formalized as follows.

Definition 2.4.1 For all logging specifications LS , the trace τ is ideally instrumented for LS

iff for all finite prefixes σ of τ we have σ ; L where L is sound and complete with respect to

LS and σ.

We observe that the restriction imposed on logging specifications by Definition 2.2.1, im-

plies that ideal instrumentation of any logging specification is a safety property in the sense

defined by Schneider [13].

Theorem 2.4.1 For all logging specifications LS , the set of ideally instrumented traces is a

safety property.

Proof. If τ is ideally instrumented for LS , then it is prefix-closed by definition. Furthermore,

if τ is not ideally instrumented for LS , then it will definitely be rejected in a finite amount of

time, since any information in LS (τ) is encountered after execution of a finite prefix σ of τ by

Definition 2.2.1. These two facts obtain the result. ut

CHAPTER 2. A SEMANTICS OF AUDIT LOGGING 15

This result implies that e.g. edit automata can be used to enforce instrumentation of logging

specifications (see Section 4.5). However, theory related to safety properties and their enforce-

ment by execution monitors [13, 26] do not provide an adequate semantic foundation for audit

log generation, nor an account of soundness and completeness of audit logs.

2.5 Implementing Logging Specifications with Program Rewriting

The above-defined correctness conditions for audit logs provide a foundation on which to estab-

lish correctness of logging implementations. Here we consider program rewriting approaches.

Since rewriting concerns specific languages, we introduce an abstract notion of programs p with

an operational semantics that can produce a trace. We write p ⇓ σ iff program p can produce

execution trace τ , either deterministically or non-deterministically, and σ is a finite prefix of τ .

A rewriting algorithm R is a (partial) function that takes a program p in a source language

and a logging specification LS and produces a new program, R(p,LS), in a target language.1

The intent is that the target program is the result of instrumenting p to produce an audit log

appropriate for the logging specification LS . A rewriting algorithm may be partial, in particular

because it may only be intended to work for a specific set of logging specifications.

Ideally, a rewriting algorithm should preserve the semantics of the program it instruments.

That is, R is semantics-preserving if the rewritten program simulates the semantics of the

source code, modulo logging steps. We assume given a correspondence relation :≈ on execu-

tion traces. A coherent definition of correspondence should be similar to a bisimulation, but

it is not necessarily symmetric nor a bisimulation, since the instrumented target program may

be in a different language than the source program. We deliberately leave the correspondence

relation underspecified, as its definition will depend on the instantiation of the model. Possi-
1We use metavariable p to range over programs in either the source or target language; it will be clear from

context which language is used.

CHAPTER 2. A SEMANTICS OF AUDIT LOGGING 16

ble definitions are that traces produce the same final value, or that traces when restricted to a

set of memory locations are equivalent up to stuttering. We provide an explicit definition of

correspondence for λ-calculus source and target languages in Chapter 4.

Definition 2.5.1 Rewriting algorithm R is semantics preserving iff for all programs p and

logging specifications LS such thatR(p,LS) is defined, all of the following hold:

1. For all traces τ such that p ⇓ τ there exists τ ′ with τ :≈ τ ′ andR(p,LS) ⇓ τ ′.

2. For all traces τ such that R(p,LS) ⇓ τ there exists a trace τ ′ such that τ ′ :≈ τ and

p ⇓ τ ′.

In addition to preserving program semantics, a correctly rewritten program constructs a log

in accordance with the given logging specification. More precisely, if LS is a given logging

specification and a trace τ describes execution of a source program, rewriting should produce

a program with a trace τ ′ that corresponds to τ (i.e., τ :≈ τ ′), where the log L generated by τ ′

contains the same information as LS (τ), or at least a sound approximation. Some definitions

of :≈ may allow several target-language traces to correspond to source-language traces (as

for example in Chapter 4, Definition 4.3.1). In any case, we expect that at least one simulation

exists. Hence we write simlogs(p, τ) to denote a nonempty set of logs L such that, given source

language trace τ and target program p, there exists some trace τ ′ where p ⇓ τ ′ and τ :≈ τ ′ and

τ ′ ; L. The name simlogs evokes the relation to logs resulting from simulating executions in

the target language.

The following definitions then establish correctness conditions for rewriting algorithms.

Note that satisfaction of either of these conditions only implies condition (i) of Definition 2.5.1,

not condition (ii), so semantics preservation is an independent condition.

Definition 2.5.2 Rewriting algorithm R is sound iff for all programs p, logging specifications

CHAPTER 2. A SEMANTICS OF AUDIT LOGGING 17

LS , and finite traces τ where p ⇓ τ , for all L ∈ simlogs(R(p,LS), τ) it is the case that L is

sound with respect to LS and τ .

Definition 2.5.3 Rewriting algorithm R is complete iff for all programs p, logging specifica-

tions LS , and finite traces τ where p ⇓ τ , for all L ∈ simlogs(R(p,LS), τ) it is the case that

L is complete with respect to LS and τ .

Chapter 3

Languages for Logging Specifications

In this chapter, we go into more detail about information algebra and why it is a good foundation

for logging specifications and semantics.

3.1 Support for Various Approaches

Various approaches are taken to audit log generation and representation, including logical [22],

database [27], and probabilistic approaches [28]. Information algebra is sufficiently general to

contain relevant systems as instances, so our notions of soundness and completeness can apply

broadly. Here we discuss logical and database approaches.

3.1.1 First Order Logic (FOL)

Logics have been used in several well-developed auditing systems [29, 30], for the encoding of

both audit logs and queries. FOL in particular is attractive due to readily available implemen-

tation support, e.g. Datalog and Prolog.

Let Greek letters φ and ψ range over FOL formulas and let capital letters X,Y, Z range

over sets of formulas. We posit a sound and complete proof theory supporting judgements of

18

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 19

the form X ` φ. In this text we assume without loss of generality a natural deduction proof

theory.

The properties given in the following Lemma are stated without proof since they are self-

evident properties of FOL deduction.

Lemma 3.1.1 Each of the following properties hold:

1. X ` φ for each φ ∈ X

2. If X ` φ for each φ in Y and Y ` ψ, then X ` ψ

Elements of our algebra are sets of formulas closed under logical entailment. Intuitively,

given a set of formulas X , the closure of X is the set of formulas that are logically entailed by

X , and thus represents all the information contained in X . In spirit, we follow the treatment of

sentential logic as an information algebra explored in related foundational work [12], however

our definition of closure is syntactic, not semantic.

Definition 3.1.1 We define a closure operation C, and a set ΦFOL of closed sets of formulas:

C(X) = {φ | X ` φ} ΦFOL = {X | C(X) = X}

Note in particular that C(∅) is the set of logical tautologies.

Due to the definition of preconditions, we will be particularly interested in proving proper-

ties of sets CL(X):

Definition 3.1.2 For each sublanguage L ∈ S, we define closure operator CL(X):

CL(X) = C(X) ∩ L.

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 20

An important point about such sets is that their closures contain tautological assertions, which

may involve predicates P which are not included in L. However, in tautological assertions any

predicate does as well as any other, which is an important fact to get hold of for our proofs.

Thus we will identify a “dummy” predicate that, in essence, allows us to treat a canonical form

of tautologies.

Definition 3.1.3 We reserve a unary dummy predicate D with a countably infinite domain of

constants c, and posit an injective function from distinct concrete assertions P (c̄) to distinct

D(c). We further define normL(φ) to be the formula φ′ which is the same as φ, but where

each P (c̄) 6∈ L is replaced with its corresponding image D(c) in the injection. The pointwise

extension of normL to sets X is denoted normL(X).

Now, we demonstrate canonical forms:

Lemma 3.1.2 X ∩ L ∪ Y ` φ iff X ∩ L ∪ normL(Y) ` normL(φ).

Proof. First we prove the left-to-right implication by induction on the derivation of C(X)∩L∪

Y ` φ and case analysis on the last step in the derivation.

Case Axiom. In this case φ ∈ X ∩ L ∪ Y , so either φ ∈ Y , or φ ∈ X ∩ L. In the former

subcase, normL(φ) ∈ normL(Y) by definition and normL(φ) = φ in the latter subcase. In

either subcase, the result holds axiomatically.

Case→ elimination. In this case we have:

X ∩ L ∪ Y ` ψ → φ X ∩ L ∪ Y ` ψ

X ∩ L ∪ Y ` φ

By the induction hypothesis we have:

X ∩ L ∪ normL(Y) ` normL(ψ → φ) X ∩ L ∪ normL(Y) ` normL(ψ)

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 21

But normL(ψ → φ) = normL(ψ) → normL(ψ) by definition, so the result follows in this

case by modus ponens. ut

Let Preds be the set of all predicate symbols, and let S ⊆ Preds be a set of predicate

symbols. We define sublanguage LS to be the set of well-formed formulas over predicate

symbols in S (and including boolean atoms T and F , and closed under the usual first-order

connectives and binders). We will use sublanguages to define refinement operations in our

information algebra. Subset containment induces a lattice structure, denoted S, on the set of all

sublanguages, with F = LPreds as the top element.

Lemma 3.1.2 shows that wlog we can modify S so that every L ∈ S contains D. Hence we

have immediately:

Lemma 3.1.3 For all L,M ∈ S and φ ∈ F , normL(φ) ∈ L, and if φ ∈M then normL(φ) ∈

M .

This allows us to prove the following important auxiliary results about closures.

Lemma 3.1.4 If C(X) ∩ L ` φ and φ ∈M , then C(X) ∩ L ∩M ` φ.

Proof. By Lemma 3.1.3 we have normL(φ) ∈ L, and by Lemma 3.1.2 we have C(X) ∩ L `

normL(φ), hence normL(φ) ∈ C(X) ∩ L. But also normL(φ) ∈ M by assumption and

Lemma 3.1.3, so also normL(φ) ∈ C(X) ∩ L ∩M . Hence C(X) ∩ L ∩M ` normL(φ) as

an axiom, therefore the result follows by Lemma 3.1.2. ut

Lemma 3.1.5 If CL(CM (X)) ∪ Y ` φ then CM∩L(X) ∪ Y ` φ.

Proof. The result follows by induction on CL(CM (X)) ∪ Y ` φ and case analysis on the last

step in the derivation. Most cases follow in a straightforward manner; the presence of Y in the

formulation is to allow for additional hypotheses, as for example in the case of→ introduction,

as follows.

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 22

Case→ introduction. In this case φ = φ1 → φ2, and we have:

CL(CM (X)) ∪ Y ∪ {φ1} ` φ2

CL(CM (X)) ∪ Y ` φ1 → φ2

but then by the induction hypothesis the judgement CM∩L(X)∪ Y ∪ {φ1} ` φ is derivable, so

the result follows by→ introduction.

The interesting case is the axiomatic one, i.e. where φ ∈ CL(CM (X))∪Y , and specifically

the subcase where φ ∈ CL(CM (X)), which follows by Lemma 3.1.4. ut

The following Lemma completes the necessary preconditions to prove that the construction

ΦFOL is a “domain-free” information algebra [12].

Lemma 3.1.6 Each of the following properties hold:

1. If X ⊆ Y then C(X) ⊆ C(Y).

2. C(X ∪ Y) = C(X ∪ C(Y))

3. C(CL(CM (X))) = C(CM∩L(X))

for X ⊆ F and L,M ∈ S

4. CL(CL(X) ∪ Y) = CL(CL(X) ∪ CL(Y))

Proof. Properties (1) and (2) are a consequence of Lemma 3.1.1 as demostrated in [12].

Proof of (3). By definition:

C(CL(CM (X))) = C(C(C(X) ∩M) ∩ L) C(CM∩L(X)) = C(C(X) ∩M ∩ L)

Since C(X)∩M ⊆ C(C(X)∩M) by Lemma 3.1.1 property (1), therefore by property (1) in

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 23

the current Lemma:

C(C(X) ∩M ∩ L) ⊆ C(C(C(X) ∩M) ∩ L).

It thus remains to show that:

C(C(C(X) ∩M) ∩ L) ⊆ C(C(X) ∩M ∩ L)

which follows by definition of closure and an application of Lemma 3.1.5, taking Y = ∅ in

that Lemma.

Proof of (4). By (2), we have:

C(CL(X) ∪ Y) = C(CL(X) ∪ C(Y))

and thus also:

C(CL(X) ∪ (C(Y) ∩ L)) ⊆ C(CL(X) ∪ C(Y))

which establishes:

CL(CL(X) ∪ CL(Y)) ⊆ CL(CL(X) ∪ Y).

For brevity in the remaining, define:

A = CL(CL(X) ∪ C(Y)) B = CL(CL(X) ∪ CL(Y)).

To prove the result it now suffices to establish that A ⊆ B, so we assume on the contrary that

there exists some φ ∈ L where A ` φ but B 6` φ. Now, clearly φ 6∈ C(X) and φ 6∈ C(Y),

since in these cases it must be that B ` φ holds. Therefore there exist some minimal nonempty

subsets C ⊆ C(Y) and D ⊆ CL(X) such that C ∪ D ` φ. Let ψD be the conjunction of

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 24

terms in D. Clearly ψD ∈ L. Furthermore, by properties of logic, C ` ψD → φ holds, so that

ψD → φ ∈ C(Y), and since ψD ∈ L and φ ∈ L by construction and assumption, therefore

ψD → φ ∈ L, hence ψD → φ ∈ CL(Y). But ψD ∈ CL(X) necesarily, soCL(X)∪CL(Y) ` φ

by modus ponens and (1). Thus B ` φ also by (1), which is a contradiction, etc. ut

Now we can define the focus and combination operators, which are the fundamental opera-

tors of an information algebra. Focusing isolates the component of a closed set of formulas that

is in a given sublanguage. Combination closes the union of closed sets of formulas. Intuitively,

the focus of a closed set of formulas X to sublanguage L is the refinement of the information

in X to the formulas in L. The combination of closed sets of formulas X and Y combines the

information of each set.

Definition 3.1.4 Define:

1. Focusing: X⇒S = C(X ∩ LS) where X ∈ ΦFOL, S ⊆ Preds

2. Combination: X ⊗ Y = C(X ∪ Y) where X,Y ∈ ΦFOL

These definitions of focusing and combination enjoy a number of properties within the al-

gebra, as stated in the following Theorem, establishing that the construction is an information

algebra. FOL has been treated as an information algebra before, but our definitions of combi-

nation and focusing and hence the result are novel.

Theorem 3.1.1 Structure (ΦFOL,S) with focus operation X⇒S and combination operation

X ⊗ Y forms a domain-free information algebra.

Proof. The following properties hold immediately according to Lemma 3.1.6 and Lemma 3.1.1,

and thus (ΦFOL,S) is an information algebra [12]:

• Semigroup: Φ is associative and commutative under combination, and C(∅) is a neutral

element with X ⊗ C(∅) = X for all X ∈ Φ.

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 25

• Transitivity: (X⇒L)
⇒M

= X⇒L∩M for all X ∈ Φ and L,M ∈ S.

• Combination: (X⇒L ⊗ Y)
⇒L

= X⇒L ⊗ Y⇒L for all X,Y ∈ Φ and L ∈ S.

• Support: X⇒F = X for all X ∈ Φ.

• Idempotence: X ⊗X⇒L = X for all X ∈ Φ and L ∈ S.

ut

In addition, to interpret traces and logs as elements of this algebra, i.e. to define the func-

tion b·c, we assume existence of a function toFOL(·) that injectively maps traces and logs to

sets of FOL formulas, and then take b·c = C(toFOL(·)). To define the range of toFOL(·),

that is, to specify how trace information will be represented in FOL, we assume the existence

of configuration description predicates P which are each at least unary. Each configuration

description predicate fully describes some element of a configuration κ, and the first argument

is always a natural number t, indicating the time at which the configuration occurred. A set

of configuration description predicates with the same timestamp describes a configuration, and

traces are described by the union of sets describing each configuration in the trace. In particu-

lar, the configuration description predicates include predicate Call(t, f, x), which indicates that

function f is called at time t with argument x. We will fully define toFOL(·) when we discuss

particular source and target languages for program rewriting.

Example 3.1.1 We return to the example described in Section 1.3 to show how FOL can express

break the glass logging specifications. Adapting a logic programming style, the trace of a

program can be viewed as a fact base, and the logging specification LSH performs resolution

of a LoggedCall predicate, defined via the following Horn clause we call ψH :

∀t, d, s, u.(Call(t, read, u, d) ∧ Call(s,breakGlass, u) ∧ s < t ∧ PatientInfo(d))

=⇒ LoggedCall(t, read, u, d)

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 26

Here we imagine that breakGlass is a break the glass function where u identifies the current

user and PatientInfo is a predicate specifying which files contain patient information. The

log contains only valid instances of LoggedCall given a particular trace, which specify the

user and sensitive information accessed following glass breaking, which otherwise would be

disallowed by a separate access control policy.

Formally, we define logging specifications in a logic programming style by using com-

bination and focusing. Any logging specification is parameterized by a sublanguage S that

identifies the predicate(s) to be resolved and Horn clauses X that define it/them, hence we de-

fine a functional spec from pairs (X,S) to specifications LS , where we use λ as a binder for

function definitions in the usual manner:

Definition 3.1.5 The function spec is given a pair (X,S) and returns a FOL logging specifi-

cation, i.e. a function from traces to elements of ΦFOL:

spec(X,S) = λτ.(bτc ⊗ C(X))⇒S .

In any logging specification spec(X,S), we call X the guidelines.

The above example LSH would then be formally defined as spec(ψH , {LoggedCall}).

3.1.2 Relational Database

Relational algebra is a canonical example of an information algebra. We define databases D

as sets of relations, where a relation X is a set of tuples f . We write ((a1 : x1), ..., (an : x1))

to denote an n-ary tuple with attributes (aka label) ai associated with values xi. Databases are

elements of the information algebra, and sublanguages S are collections of sets of attributes.

Each set of attributes corresponds to a specific relation. Focusing is the restriction to particular

relations in a database, and combination is the union of databases. Hence, letting ≤RA denote

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 27

the relational algebra information ordering, D1 ≤RA D2 iff D1 ⊗ D2 = D2. We refer to

this algebra as ΦRA. In this context, a trace can be interpreted as a collection of relations, and

logging specifications can be defined using selects. Relational databases are also heavily used

for storing and querying audit logs.

LetA be a denumerable set of attribute names. Moreover, let R be the universe for relations,

i.e., R = {R ⊆ Aa1 × · · ·Aam | ai ∈ A}. Note that Aai is the domains of values for attribute

ai. We denote the arity of a relation R with arity(R).

Definition 3.1.6 Let Name : R → P(A) be defined as Name(R) = {a1, · · · , aarity(R)}, if

R ⊆ Aa1 × · · ·Aaarity(R)
.

Definition 3.1.7 Let database D be a finite subset of R containing finite relations, i.e., a

database D is a finite collection of relations R ∈ R, where each R is a finite set of tuples

defining the relation. ΦRA is defined as the set of all databases.

We also define the querying sublanguages as the sets of relation names, i.e., S ∈ P(P(A)).

Next, we define the information algebra operations:

Definition 3.1.8 Define:

• Focusing: D⇒S = {R ∈ D | Name(R) ∈ S}, where D ∈ ΦRA, and S ∈ P(P(A))

and finite,

• Combination: D1⊗D2 = {R1∪R2 | Ri ∈ Di, i ∈ {1, 2}, Name(R1) = Name(R2)}.

Note that in case some relation is not defined in a database, we assume it is defined as

an empty relation. We also define a mapping which represents non-trivial relation names in a

database:

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 28

Definition 3.1.9 Let Names : ΦRA → P(P(A)) be defined as

Names(D) = {Name(R) | R ∈ D,R 6= ∅}.

In what follows we show that (ΦRA,P(P(A))) is an information algebra.

Lemma 3.1.7 ΦRA is a semigroup.

Proof. We need to show that

• ΦRA is associative on combination:

Holds straightforwardly based on the associativity of union on sets:

D1 ⊗ (D2 ⊗D3) = D1 ⊗ {R2 ∪R3 | Ri ∈ Di, i ∈ {2, 3}, Name(R2) = Name(R3)}

= {R1 ∪ (R2 ∪R3) | Ri ∈ Di, i ∈ {1, 2, 3},

Name(R1) = Name(R2) = Name(R3)}

= {(R1 ∪R2) ∪R3 | Ri ∈ Di, i ∈ {1, 2, 3},

Name(R1) = Name(R2) = Name(R3)}

= {R1 ∪R2 | Ri ∈ Di, i ∈ {1, 2}, Name(R1) = Name(R2)} ⊗D3

= (D1 ⊗D2)⊗D3.

• ΦRA is commutative on combination:

Holds straightforwardly based on the commutativity of union on sets:

D1 ⊗D2 = {R1 ∪R2 | Ri ∈ Di, i ∈ {1, 2}, Name(R1) = Name(R2)}

= {R2 ∪R1 | Ri ∈ Di, i ∈ {1, 2}, Name(R1) = Name(R2)}

= D2 ⊗D1.

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 29

• There exists a neutral element I such that for all D, D ⊗ I = D:

Let I = {∅}. Obviously, D ⊗ I = D as ∅ is the neutral element for union.

ut

Lemma 3.1.8 Transitivity: (D⇒S1)⇒S2 = D⇒S1∩S2 .

Proof.

(D⇒S1)⇒S2 = {R ∈ D | Name(R) ∈ S1}⇒S2

= {R ∈ D | Name(R) ∈ S1, Name(R) ∈ S2}

= {R ∈ D | Name(R) ∈ S1 ∩ S2}

= D⇒S1∩S2 .

ut

Lemma 3.1.9 Combination: (D1
⇒S ⊗D2)⇒S = D1

⇒S ⊗D2
⇒S .

Proof.

(D1
⇒S ⊗D2)⇒S = ({R1 ∈ D | Name(R) ∈ S} ⊗D2)⇒S

= {R1 ∪R2 | R1 ∈ D1, Name(R1) ∈ S,R2 ∈ D2,

Name(R1) = Name(R2)}⇒S

= {R1 ∪R2 | R1 ∈ D1, Name(R1) ∈ S,R2 ∈ D2,

Name(R1) = Name(R2), Name(R1 ∪R2) ∈ S}.

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 30

Obviously, if Name(R1) = Name(R2), then Name(R1 ∪R2) = Name(R1). We thus have

(D1
⇒S ⊗D2)⇒S = {R1 ∪R2 | R1 ∈ D1, Name(R1) ∈ S,R2 ∈ D2,

Name(R1) = Name(R2)}

Moreover,

D1
⇒S ⊗D2

⇒S = {R1 ∈ D | Name(R1) ∈ S} ⊗ {R2 ∈ D | Name(R2) ∈ S}

= {R1 ∪R2 | R1 ∈ D1, Name(R1) ∈ S,R2 ∈ D2, Name(R2) ∈ S,

Name(R1) = Name(R2)}

= {R1 ∪R2 | R1 ∈ D1, Name(R1) ∈ S,R2 ∈ D2,

Name(R1) = Name(R2)}.

Thus, (D1
⇒S ⊗D2)⇒S = D1

⇒S ⊗D2
⇒S . ut

Lemma 3.1.10 Support: ∀D,∃S,D⇒S = D.

Proof. Let S = Names(D). Then, D⇒Names(D) = D. ut

Lemma 3.1.11 Idempotence: D ⊗D⇒S = D.

Proof.

D ⊗D⇒S = {R | R ∈ D} ⊗ {R ∈ D | Name(R) ∈ S}

= {R ∈ D | Name(R) /∈ S} ∪ {R ∈ D | Name(R) ∈ S}

= D.

ut

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 31

Corollary 3.1.1 (ΦRA,P(P(A))) is an information algebra.

3.2 Transforming and Combining Audit Logs

Multiple audit logs from different sources are often combined in practice. Also, logging in-

formation is often transformed for storage and communication. For example, log data may be

generated in common event format (CEF), which is parsed and stored in relational database

tables, and subsequently exported and communicated via JSON. In all cases, it is crucial to

characterize the effect of transformation (if any) on log information, and relate queries on vari-

ous representations to the logging specification semantics. Otherwise, it is unclear what is the

relation of log queries to log-generating programs.

To address this, information algebra provides another useful concept called monotone map-

ping. Given two information algebras Ψ1 and Ψ2 with ordering relations ≤1 and ≤2 respec-

tively, a mapping µ from elements X,Y of Ψ1 to elements µ(X), µ(Y) of Ψ2 is monotone iff

X ≤1 Y implies µ(X) ≤2 µ(Y). For example, assuming that Ψ1 is our FOL information alge-

bra while Ψ2 is relational algebra, we can define a monotone mapping using a least Herbrand

interpretation [31], denoted H, and by positing a function attrs from n-ary predicate symbols to

functions mapping numbers 1, ..., n to labels. That is, attrs(P)(n) is the label associated with

the nth argument of predicate P. We require that if P 6= Q then attrs(P)(j) 6= attrs(Q)(k)

for all j, k. To map predicates to tuples we have:

tuple(P(x1, . . . , xn)) = ((attrs(P)(1) : x1), . . . , (attrs(P)(n) : xn))

Then to obtain a relation from all valid instances of a particular predicate P given formulas X

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 32

we define:

RP(X) = {tuple(P(x1, . . . , xn)) | P(x1, . . . , xn) ∈ H(X)}

Obviously, Name(RP(X)) = {attrs(P)(1), · · · , attrs(P)(n)}, for n-ary predicate symbol

P.

Now we define the function rel which is collection of all relations obtained from X , where

P1, ...,Pn are the predicate symbols occurring in X:

rel(X) = {RP1(X), · · · , RPn(X)}

Theorem 3.2.1 rel is a monotone mapping.

Proof. We need to show that X ≤FOL Y implies rel(X) ≤RA rel(Y).

From X ≤FOL Y we have H(X) ⊆ H(Y). Let R ∈ rel(X) and R′ ∈ rel(Y), such that

Name(R) = Name(R′). Then, R = RP(X) and R′ = RP(Y), for some n-ary predicate

symbol P such that Name(R) = {attrs(P)(1), · · · , attrs(P)(n)}. Since H(X) ⊆ H(Y),

R = {tuple(P(x1, . . . , xn)) | P(x1, . . . , xn) ∈ H(X)}

⊆ {tuple(P(x1, . . . , xn)) | P(x1, . . . , xn) ∈ H(Y)} = R′.

Therefore, R ∪R′ = R′. Then,

rel(X)⊗ rel(Y) = {R ∪R′ | R ∈ rel(X), R′ ∈ rel(Y), Name(R) = Name(R′)}

= {R′ | R ∈ rel(X), R′ ∈ rel(Y), Name(R) = Name(R′)}

= rel(Y).

CHAPTER 3. LANGUAGES FOR LOGGING SPECIFICATIONS 33

This implies rel(X) ≤RA rel(Y) by information containment definition. ut

Thus, if we wish to generate an audit log L as a set of FOL formulas, but ultimately store

the data in a relational database, we are still able to maintain a formal relation between stored

logs and the semantics of a given trace τ and specification LS . E.g., if a log L is sound with

respect to τ and LS , then rel(bLc) ≤RA rel(LS (τ)). While the data in rel(bLc) may very

well be broken up into multiple relations R in practice, e.g. to compress data and/or for query

optimization, the formalism also establishes correctness conditions for the transformation that

relate resulting information to the logging semantics LS (τ) by way of the mapping.

Chapter 4

Rewriting Programs with Logging

Specifications

Since correct logging instrumentation is a safety property (2.4), there are various implementa-

tion strategies. For example, one could define an edit automata that enforces the property (see

Section 4.5), that could be implemented either as a separate program monitor or using IRM

techniques [14]. But since we are interested in program rewriting for a particular class of log-

ging specifications, the approach we discuss here is more simply stated and proven correct than

a general IRM methodology.

We specify a class of logging specifications of interest, along with a program rewriting

algorithm that is sound and complete for it. We consider a basic λ-calculus that serves as a

prototypical case study. The supported class of logging specifications is predicated on temporal

properties of function calls and characteristics of their arguments. This class has practical

potential since security-sensitive operations are often packaged as functions or methods (e.g. in

medical records software [32]), and the supported class allows complex policies such as break

the glass to be expressed. The language of logging specifications is FOL, and we use ΦFOL to

34

CHAPTER 4. REWRITING PROGRAMS WITH LOGGING SPECIFICATIONS 35

define the semantics of logging and prove correctness of the algorithm.

4.1 Source Language

We first define a source language Λcall, including the definitions of configurations, execution

traces, and function toFOL(·) that shows how we concretely model execution traces in FOL.

Language Λcall is a simple call-by-value λ-calculus with named functions. A Λcall program

is a pair (e, C) where e is an expression, and C is a codebase which maps function names

to function definitions. A Λcall configuration is a triple (e, n, C), where e is the expression

remaining to be evaluated, n is a timestamp (a natural number) that indicates how many steps

have been taken since program execution began, and C is a codebase. The codebase does not

change during program execution.

The syntax of Λcall is as follows.

v ::= x | f | λx. e values

e ::= e e | v expressions

E ::= [] | E e | v E evaluation contexts

κ ::= (e, n, C) configurations

p ::= (e, C) programs

CHAPTER 4. REWRITING PROGRAMS WITH LOGGING SPECIFICATIONS 36

The small-step semantics of Λcall is defined as follows.

β

((λx. e) v, n, C)→ (e[v/x], n+ 1, C)

βCall

C(f) = λx. e

(f v, n, C)→ (e[v/x], n+ 1, C)

Context

(e, n, C)→ (e′, n′, C)

(E[e], n, C)→ (E[e′], n′, C)

An execution trace τ is a sequence of configurations, and for a program p = (e, C) and

execution trace τ = κ0 . . . κn we define p ⇓ τ if and only if κ0 = (e, 0, C) and for all i ∈ 1..n

we have κi−1 → κi.

We now show how to model a configuration as a set of ground instances of predicates, and

then use this to model execution traces. We posit predicates Call, App, Value, Context, and

Codebase to logically denote run time entities. For κ = (e, n, C), we define toFOL(κ) by

cases, where 〈C〉n =
⋃

f∈dom(C)

{Codebase(n, f , C(f))}1.

toFOL(v, n, C) = {Value(n, v)} ∪ 〈C〉n

toFOL(E[f v], n, C) = {Call(n, f , v),Context(n,E)} ∪ 〈C〉n

toFOL(E[(λx. e) v)], n, C) = {App(n, (λx.e), v),Context(n,E)} ∪ 〈C〉n

We define toFOL(τ) for a potentially infinite execution trace τ = κ0κ1 . . . by defining it over

1While Λcall expressions and evaluation contexts appear as predicate arguments, their syntax can be written as
string literals to conform to typical Datalog or Prolog syntax.

CHAPTER 4. REWRITING PROGRAMS WITH LOGGING SPECIFICATIONS 37

its prefixes. Let prefix(τ) denote the set of prefixes of τ . Then,

toFOL(τ) =
⋃

σ∈prefix(τ)

toFOL(σ),

where toFOL(σ) = toFOL(κ0) ∪ · · · ∪ toFOL(κn), for σ = κ0 . . . κn. Function toFOL(·) is

injective up to α-equivalence since toFOL(τ) fully and uniquely describes the execution trace

τ .

4.2 Specifications Based on Function Call Properties

We define a class Calls of logging specifications that capture temporal properties of function

calls, such as those reflected in break the glass policies. We restrict specification definitions

to safe Horn clauses to ensure applicability of well-known results and total algorithms such

as Datalog [31]. Specifications in Calls support logging of calls to a specific function f that

happen after functions g1, . . . ,gn are called. Conditions on all function arguments, and times

of their invocation, can be defined via a predicate φ. Hence more precise requirements can be

imposed, e.g. a linear ordering on function calls, particular values of functions arguments, etc.

Definition 4.2.1 Calls is the set of all logging specifications spec(X, {LoggedCall}) where

X contains a safe Horn clause of the following form:

∀t0, . . . , tn, x0, . . . , xn .Call(t0, f , x0)

n∧
i=1

(Call(ti,gi, xi) ∧ ti < t0) ∧

φ((x0, t0), . . . , (xn, tn)) =⇒ LoggedCall(t0, f , x0).

While set X may contain other safe Horn clauses, in particular definitions of predicates occur-

ring in φ, no other Horn clause in X uses the predicate symbols LoggedCall, Value, Context,

Call, App, or Codebase. For convenience in the following, we define Logevent(LS) = f and

CHAPTER 4. REWRITING PROGRAMS WITH LOGGING SPECIFICATIONS 38

Triggers(LS) = {g1, ...,gn}.

We note that specifications in Calls clearly satisfy Definition 2.2.1, since preconditions for

logging a particular call to f must be satisfied at the time of that call.

4.3 Target Language

The syntax of target language Λlog extends Λcall syntax with a command to track logging pre-

conditions (callEvent(f , v)) and a command to emit log entries (emit(f , v)). Configurations

are extended to include a set X of logging preconditions, and an audit log L.

e ::= . . . | callEvent(f , v); e | emit(f , v); e expressions

κ ::= (e,X, n,L, C) configurations

The semantics of Λlog extends the semantics of Λcall with new rules for callEvent(f , v)

and emit(f , v), which update the set of logging preconditions and audit log respectively.

Precondition

(callEvent(f , v); e,X, n,L, C)→ (e,X ∪ {Call(n− 1, f , v)}, n,L, C)

Log

X ∪XGuidelines ` LoggedCall(n− 1, f , v)

(emit(f , v); e,X, n,L, C)→ (e,X, n,L ∪ {LoggedCall(n− 1, f , v)}, C)

NoLog

X ∪XGuidelines 6` LoggedCall(n− 1, f , v)

(emit(f , v); e,X, n,L, C)→ (e,X, n,L, C)

An instrumented program uses the set of logging preconditions to determine when it should

CHAPTER 4. REWRITING PROGRAMS WITH LOGGING SPECIFICATIONS 39

emit events to the audit log. The semantics is parameterized by a guideline XGuidelines , typi-

cally taken from a logging specification. Given the definition of Calls, these semantics would

be easy to implement using e.g. a Datalog proof engine.

Note that to ensure that these instrumentation commands do not change execution behavior,

the configuration’s time is not incremented when callEvent(f , v) and emit(f , v) are evaluated.

That is, the configuration time counts the number of source language computation steps. Also,

since events are intended to flag functions called in the immediately preceding timestep, as

we will eventually specify for program rewriting, timesteps are decremented for triggers and

logged calls.

The rules Log and NoLog rely on checking whether XGuidelines and logging precondi-

tions X entail LoggedCall(n− 1, f , v). This can be accomplished using off-the-shelf theorem

provers for Horn clause logics, such as Datalog or Prolog.

For a target language program p = (e, C) and execution trace τ = κ0 . . . κn we define p ⇓ τ

if and only if κ0 = (e, ∅, 0, ∅, C) and for all i ∈ 1..n we have κi−1 → κi.

To establish correctness of program rewriting, we need to define a correspondence relation

:≈. Source language execution traces and target language execution traces correspond if they

represent the same expression evaluated to the same point. We make special cases for when the

source execution is about to perform a function application that the target execution will track

or log via an callEvent(f , v) or emit(f , v) command. In these cases, the target execution may

be ahead by one or two steps, allowing time for addition of information to the log.

Definition 4.3.1 Given source language execution trace τ = κ0 . . . κm and target language

execution trace τ ′ = κ′0 . . . κ
′
n, where κi = (ei, ti, Ci) and κ′i = (e′i, Xi, t

′
i,Li, C′i), τ :≈ τ ′ iff

e0 = e′0 and either

1. em = e′n (taking = to mean syntactic equivalence); or

2. em = e′n−1 and e′n = callEvent(f , v); e′ for some expressions f , v, and e′; or

CHAPTER 4. REWRITING PROGRAMS WITH LOGGING SPECIFICATIONS 40

3. em = e′n−2 and e′n = emit(f , v); e′ for some expressions f , v, and e′.

Finally, we need to define toFOL(L) for audit logs L produced by an instrumented pro-

gram. Since our audit logs are just sets of formulas of the form LoggedCall(t, f , v), we define

toFOL(L) = L.

4.4 Program Rewriting Algorithm

Our program rewriting algorithm RΛcall
takes a Λcall program p = (e, C), a logging spec-

ification LS = spec(XGuidelines , {LoggedCall}) ∈ Calls, and produces a Λlog program

p′ = (e′, C′) such that e and e′ are identical, and C′ is identical to C except for the addition

of callEvent(h, v) and emit(h, v) commands. The algorithm is straightforward: we modify

the codebase to add callEvent(h, v) to the definition of any function h ∈ Triggers(LS) ∪

{Logevent(LS)} and add emit(f , v) to the definition of function f = Logevent(LS).

Definition 4.4.1 For Λcall program p = (e, C) and logging specifications LS ∈ Calls, define:

RΛcall
((e, C),LS) = (e, C′)

where C′(f) =

λx.callEvent(f , x); emit(f , x); ef if f = Logevent(LS) and C(f) = λx.ef

λx.callEvent(f , x); ef if f ∈ Triggers(LS) and C(f) = λx.ef

C(f) otherwise

Program rewriting algorithmRΛcall
is semantics preserving, sound, and complete for Calls.

We have completely formalized these results (modulo well-known Horn clause logic definitions

CHAPTER 4. REWRITING PROGRAMS WITH LOGGING SPECIFICATIONS 41

and properties) in Coq [33], code for which can be provided by the authors upon request by the

PC Chair. In this section we summarize our results.

Theorem 4.4.1 Program rewriting algorithmRΛcall
is semantics preserving (Definition 2.5.1).

Proof. Intuitively, the addition of callEvent(f , v) and emit(f , v) commands does not interfere

with Λcall evaluation. The proof follows easily by induction on the number of small-step re-

ductions of programs. ut

Our proof strategy for soundness and completeness of RΛcall
is to show that an audit log

produced by an instrumented program is the refinement of the least Herbrand model of the log-

ging specification semantics unioned with the logging specification’s guidelines. By showing

that audit logs combined with the guidelines are the least Herbrand models of the logging spec-

ification semantics, we show that they contain the same information. This implies soundness

and completeness of program rewriting.

The following Lemma relates the syntactic property of closure with the properties of a least

Herbrand model [34, 31], and shows that the least Herbrand model of X contains the same

information as X . It holds by the soundness and completeness of the logic.

Lemma 4.4.1 C(H(X)) = C(X) and H(X) = H(C(X)).

The following Lemmas states a similar but subtly different property relevant to sublanguage

focusing that we will use in Theorem 4.4.2.

Lemma 4.4.2 C(C(H(X)) ∩ L) = C(H(X) ∩ L).

The key idea underlying the soundness of the program rewriting algorithm is that any facts

that are added to the set of logging preconditions or the audit log during execution of the

instrumented program are true facts: they are in the model of the corresponding source language

execution trace.

CHAPTER 4. REWRITING PROGRAMS WITH LOGGING SPECIFICATIONS 42

Lemma 4.4.3 Let p be a Λcall program and LS ∈ Calls be a logging specification. For all

target language execution traces τ such that RΛcall
(p,LS) ⇓ τ , where τ = κ0 . . . κn and

κn = (e,X,m,L, C), there exists a source language execution trace τ ′ such that τ ′ :≈ τ and

p ⇓ τ ′ and X ⊆ toFOL(τ ′).

To show that RΛcall
is complete, we must show that for a logging specification LS =

spec(XGuidelines , {LoggedCall}) ∈ Calls and a source language execution τ , and a cor-

responding target language execution τ ′ that produces audit log L, for any ground instance

LoggedCall(t, f , v) ∈ LS (τ) we have LoggedCall(t, f , v) ∈ L. In order to show that, we need

to show that (X ∪XGuidelines) ` LoggedCall(t, f , v), where X is the set of logging precondi-

tions tracked during the target language execution τ ′ (see Rules Precondition and Log).

A key insight is that the only facts in toFOL(τ) relevant to deriving grounded goals of the

form LoggedCall(t, f , v) are facts Call(t′, f ′, v′) for f ′ ∈ {Logevent(LS)} ∪ Triggers(LS),

and these are exactly the facts that appear in the instrumented program’s set of logging precon-

ditions tracked during execution. Formally, the support of a grounded goalψ given assumptions

X , denoted support(X,ψ), is the set of conjuncts in φ where φ⇒ ψ is a grounding of a Horn

clause ∀x1, . . . , xm. φ
′ ⇒ ψ′ ∈ X and X ` φ. In Datalog terms, these are the grounded

subgoals of ψ in its derivation given knowledge base X . Hence:

Lemma 4.4.4 Let p be a Λcall program and LS ∈ Calls be a logging specification where

LS = spec(Y, S). For all τ such that p ⇓ τ there exists a target language execution trace τ ′

such that τ :≈ τ ′, R(p,LS) ⇓ τ ′ and τ ′ = κ0 . . . κn where κn = (e,X,m,L, C) such that for

all φ ∈ LS (τ) and Call(t,g, v) ∈ support(Y ∪ toFOL(τ), φ) we have Call(t,g, v) ∈ X .

From Lemma 4.4.3 and Lemma 4.4.4, we can establish that the log generated by the rewrit-

ten program is the least Herbrand model of the given logging specification semantics.

Lemma 4.4.5 Let p be a Λcall program and LS = spec(X, {LoggedCall}) ∈ Calls be a

logging specification. For all τ such that p ⇓ τ we have simlogs(RΛcall
(p,LS), τ) = {L} such

CHAPTER 4. REWRITING PROGRAMS WITH LOGGING SPECIFICATIONS 43

that:

L = H(X ∪ toFOL(τ)) ∩ L{LoggedCall}

Proof. (Sketch.) First, note that we can construct a target language execution trace τ ′ such that

RΛcall
(p,LS) ⇓ τ ′ and τ :≈ τ ′ (i.e., τ ′ executes the source program to the same point that

τ does). Let the last configuration of τ ′ be (e, Y, n,L, C). We observe that this construction

uniquely defines the log L due to determinism in the language and Definition 4.3.1.

Let Z = H(X ∪ toFOL(τ)) ∩ L{LoggedCall}. If LoggedCall(n, f , v) ∈ L, then X ∪

Y ` LoggedCall(n, f , v) by semantic definition of Llog. But by Lemma 4.4.3 we have X ⊆

toFOL(τ), hence X ∪ toFOL(τ) ` LoggedCall(n, f , v) so LoggedCall(n, f , v) ∈ Z.

Conversely, if LoggedCall(n, f , v) ∈ Z, by Lemma 4.4.4 (and the determinism of our lan-

guages), any Call fact in support(X ∪ toFOL(τ),LoggedCall(n, f , v)) is also inX , hence ev-

ery such LoggedCall will also be in L. Thus LoggedCall(n, f , v) ∈ Z iff LoggedCall(n, f , v) ∈

L. The result follows by definition of H. ut

These Lemmas suffice to prove our main Theorem, demonstrating soundness and complete-

ness of program rewriting algorithmRΛcall
. This result establishes that the log generated by the

instrumented program and the semantics of the logging specification contain exactly the same

information with respect to the sublanguage L{LoggedCall}.

Theorem 4.4.2 (Soundness and Completeness) Program rewriting algorithmRΛcall
is sound

and complete (Definitions 2.5.2 and 2.5.3).

Proof. Let p be a Λcall program and LS = spec(X, {LoggedCall}) ∈ Calls be a logging

specification. We aim to show that for all source language execution traces τ such that p ⇓ τ

we have simlogs(RΛcall
(p,LS), τ) = {L} such that C(L) = LS (τ).

By Lemma 4.4.5, we have that simlogs(RΛcall
(p,LS), τ) = {L} such that L = H(X ∪

toFOL(τ)) ∩ L{LoggedCall}. By Lemma 4.4.1 and Lemma 4.4.2 LS (τ) = C(C(H(X ∪

CHAPTER 4. REWRITING PROGRAMS WITH LOGGING SPECIFICATIONS 44

state vars A[n+ 1] : array of sets of T ∗ V initial ∅

transitions not (Call(t0, f , x0) ∨ Call(ti,gi, xi)) −→ skip

Call(t1,g1, x1) −→ A[1] := A[1] ∪ {(t1, x1)}
...

Call(tn,gn, xn) −→ A[n] := A[n] ∪ {(tn, xn)}

Call(t0, f , x0)∧
(not(∃` ∈ A[1] ∗ · · · ∗A[n].φ((to, xo), `))∨
LoggedCall(t0, f , x0) logged)

−→ skip

editing rules Call(t0, f , x0)∧
∃` ∈ A[1] ∗ · · · ∗A[n].φ((to, xo), `)∧
LoggedCall(t0, f , x0) not logged

−→ add LoggedCall(t0, f , x0) to log

Figure 4.1: Edit automata that enforces ideal instrumentation

toFOL(τ)))∩L{LoggedCall}) = C(H(X ∪ toFOL(τ))∩L{LoggedCall}). Hence, both LS (τ) ≤

C(L) and C(L) ≤ LS (τ). ut

4.5 Edit Automata Enforcement of Calls Specifications

Following Theorem 2.4.1, we observe that, given a logging specification in Calls, we can

easily define an edit automata that enforces this property. The following Definition is in the

“guarded command” style used by Schneider [13]. The array A is used to store potentially

multiple values of potentially multiple calls to each function gi.

Theorem 4.5.1 Given spec(X,S) ∈ Calls, the ideal instrumentation property is enforced by

the edit automata in Figure 4.1. It is defined using the following predicates on input configura-

tions κ:

Call(t, f, x) : means Call(t, f, x) ∈ toFOL(κ)

φ logged : means φ ∈ toFOL(logof (κ))

and also T and V denote the universes of timestamps and program values respectively.

CHAPTER 4. REWRITING PROGRAMS WITH LOGGING SPECIFICATIONS 45

Proof. Straightforward by induction on traces and definitions of edit automata [26]. ut

However, as indicated in Section 2.4, this technique does not provide an adequate semantic

foundation for log generation, and consequently correctness studies.

Chapter 5

Case Study on a Medical Records

System

As a case study, we have developed a tool [35] that enables automatic instrumentation of log-

ging specifications for the OpenMRS system. The implementation is based on the formal model

developed in Chapter 4 which enjoys a correctness guarantee. The logging information is

stored in a SQL database consisting of multiple tables, and the correctness of this scheme is

established via the monotone mapping defined in Section 3.2. We have also considered how to

reduce memory overhead as a central optimization challenge.

OpenMRS [15] is a Java-based open-source web application for medical records, built on

the Spring Framework [36]. Previous efforts in auditing for OpenMRS include recording any

modification to the database records as part of the OpenMRS core implementation, and log-

ging every function call to a set of predefined records [24]. The latter illustrates the relevance

of function invocations as a key factor in logging. Furthermore, function calls define the fun-

damental unit of “secure operations” in OpenMRS access control [32]. This highlights the

relevance of our Calls logging specification class, particularly as it pertains to specification of

46

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 47

 Logging

Speci cation

in JSON

Format

Parser
JSON

Objects

Source Code

Templates for

Dynamic

Components

Source Code

Generator

Source Code

for Dynamic

Components

Aggregator

and

Compiler

Source Code

for Static

Components

Module

Bytecode

Figure 5.1: Module builder

break the glass policies, which are sensitive to authorization.

In contrast to the earlier auditing solutions for OpenMRS, ours facilitates a smart log gener-

ation mechanism in which only the necessary information are recorded, based on accurate log

specifications. Moreover, logging specifications are defined independently from code, rather

than being embedded in it in an ad-hoc manner. This way, system administrators need to only

assert logging specifications in the style of Calls (Definition 4.2.1), and the tool builds the cor-

responding module that could be installed on the OpenMRS server. This is more convenient,

declarative, and less error prone than direct ad-hoc instrumentation of code. In Figure 5.1 the

details of building the module is given.

System Architecture Summary To clarify the following discussion, we briefly summarize

the architecture of our system. Logging specifications are made in the style of Calls, which can

be parsed into JSON objects with a standard form recognized by our system. Instrumentation

of legacy code is then accomplished using aspect oriented programming. Parsed specifications

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 48

Instrumented

OpenMRS
Proof Engine

Derivation

Listener

Initialize

De ne Predicate Symbols

Add/Remove Facts/Rules

Instant Query/Response

A
d
d
 L

is
te

n
e
r

N
o
tify

 L
is

te
n
e
r

Initialize

SQL

Database

Store Log Information

Figure 5.2: System architecture

are used to identify join points, where the system weaves aspects supporting audit logging into

OpenMRS bytecode. These aspects communicate with a proof engine at the joint points to

reason about audit log generation, implementing the semantics developed for Λlog in Section

4.3. In our deployment logs are recorded in a SQL database, but our architecture supports

other approaches via the use of listeners. Figure 5.2 illustrates the major components we have

deployed to facilitate auditing at runtime.

5.1 Break the Glass Policies for OpenMRS

Break the glass policies for auditing are intended to retrospectively manage the same security

that is proactively managed by access control (before the glass is broken). Thus it is impor-

tant that we focus on the same resources in auditing as those focused on by access control.

The data model of OpenMRS consists of several domains e.g., “Patient” and “User” domains

contain information about the patients and system users respectively, and “Encounter” domain

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 49

includes the information regarding the interventions of healthcare providers with patients. In

order to access and modify the information in different domains, corresponding service-layer

functionalities are defined that are accessible through web interface. These functionalities pro-

vide security sensitive operations through which data assets are handled. Thus, OpenMRS

authorization mechanism checks user eligibility to perform these operations [32]. Likewise,

we focus on these functionalities to be addressed in the logging specifications, i.e., the triggers

and logging events are constrained to the service-layer methods as they provide access to data

domains, e.g., the patient and user data.

We adapt the logical language of logging specifications developed above (Definition 4.2.1),

with the minor extension that we allow logging of methods with more than one argument. We

note that logging specifications can include other information specified as safe Horn clauses,

e.g. ACLs, and generally define predicates specified in φ((x0, t0), . . . , (xn, tn)) of Definition

4.2.1. We consider break the glass policies as a key example application in our deployment. For

instance a simple break the glass policy states that if the glass is broken by some low-level user,

and subsequently the patient information is accessed by that user, the access should be logged.

The variable U refers to the user, and the variable P refers to the patient. This specification also

defines security levels for two users, alice and admin. The predicate @< defines the usual

total ordering on integers.

loggedCall(T, getPatient, U, P) :-

call(T, getPatient, U, P), call(S, breakTheGlass, U),

@<(S, T), hasSecurityLevel(U, low).

hasSecurityLevel(admin, high).

hassecuritylevel(alice, low).

To enable these policies in practice, we have added a “break the glass” button to a user

menu in the OpenMRS GUI that can be manually activated on demand. Activation invokes

the breakTheGlass method parameterized by the user id. We note that breaking the glass

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 50

does not turn off access control in our current implementation, which we consider a separate

engineering concern that is out of scope for this work.

It is worth mentioning that while our tool is designed for OpenMRS, our general approach

can be used for arbitrary Java code at source or bytecode level.

5.1.1 Code Instrumentation

To instrument code for log generation, we leverage the Spring Framework that supports aspect-

oriented programming (AOP). AOP is used to rewrite code where necessary with “advice”,

which in our case is before certain method invocations (so-called “before advice”). Our ad-

vice checks the invoked method names and implements the semantics given in Section 4.3,

establishing correctness of audit logging. Join points are automatically extracted from logging

specifications, and defined with service-level granularity in a configuration file. Weaving into

bytecode is also performed automatically by our system.

Since the generated code pieces are before advices, they are interposed before every inter-

face method of the declared services. An aspect is configured by declaring where the join point

and corresponding advice is. For example, in the following excerpt of a configuration file, every

interface method of the service PatientService is a join point so before invoking each of

those methods the advice in RetroSecurityAdvice will be woven into the control flow.

<advice>

<point>org.openmrs.api.PatientService</point>

<class>

org.openmrs.module.retrosecurity.advice.RetroSecurityAdvice

</class>

</advice>

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 51

The advice RetroSecurityAdvice is the before advice automatically generated by our

system based on the logging specification. It essentially determines whether a method call is a

trigger or a logging event and interacts with the proof engine appropriately in each case.

The first time the advice is executed, the XSB Prolog engine is initialized in a separate

thread. Moreover, a LoggedCall derivation listener is added to the list of the engine listeners.

Then, if memory overhead mitigation (Section 5.2) is not activated, the invoked method names

are checked and the rule Protection (Section 4.3) is implemented for the triggers and the

logging event, i.e., the proof engine is asked to add the the information regarding the invocation

of the method. In the case memory overhead mitigation is activated, the set of Protection rules

of Figure 5.3 are implemented for the triggers and the logging event. The implementation of

the rules Log and NoLog (Section 4.3) is handled by the LoggedCall derivation listener.

The advice also checks for the invocation of the interface method queryLog(). This

method communicates with the engine to facilitate instant querying based on the invocations of

the logging preconditions that exist in the memory.

5.1.2 Proof Engine

According to the the semantics of Λlog, it is necessary to perform logical deduction, in particular

resolution of LoggedCall predicates. As we will show in Section 5.2, the required deductions

could be generalized to any arbitrary formula. To this end, we have employed XSB Prolog [37]

as our proof engine, due to its reliability and robustness. We have restricted our specifications

to safe Horn clauses though, despite the fact that XSB Prolog provides a more expressive tool.

In order to have a bidirectional communication between the Java application and the engine,

InterProlog Java/Prolog SDK [38] is used.

The proof engine is initialized in a separate thread with an interface to the main execution

trace. The interface includes methods to define predicates, to add rules and facts, and to revoke

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 52

them asynchronously1. The asynchrony avoids blocking the “normal” execution trace for audit

logging purposes. The interface also provides an instant querying mechanism. The execution

trace of instrumented program communicates with the XSB Prolog engine as these interface

methods are invoked in the advices.

5.1.3 Writing and Storing the Log

Asynchronous communication with the proof engine through multi-threading enables us to

modularize the deduction of the information that we need to log, separate from the storage and

retainment details. This supports a variety of possible approaches to storing log information–

e.g., using a strict transactional discipline to ensure writing to critical log, and/or blocking

execution until log write occurs. Advice generated by the system for audit log generation just

needs to include event listeners to implement the technology of choice for log storage and

retainment.

In our application, the logging information is stored in a SQL database consisting of mul-

tiple tables. The generated advices include event listeners to implement our technology of

choice for log storage and retainment. In case a new logging information is derived by the

proof engine, the corresponding listeners in the main execution trace are notified and the listen-

ers partition and store the logging information in potentially multiple tables. Correctness of this

storage technique is established using the monotone mapping rel defined in Section 3.2, i.e.,

the join of these tables are information equivalent (Definition 2.1.4) to the semantics of logging

specification for a given break the glass policy. This ensures that the correctness guarantees

extend to database storage.

Consider the case where a loggedCall is derived by the proof engine given the logging

specification in Section 5.1. Here, the instantiation of U and P are user and patient names,

respectively, used in the OpenMRS implementation. However, logged calls are stored in a table
1Revoking facts is required for memory overhead mitigation.

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 53

called GetPatL with attributes time, uid, and pid, where uid is the primary key for a

User table with a uname attribute, and pid is the primary key for a Patient table with a

patient_name attribute. Thus, for any given logging specification of the appropriate form,

the monotonic mapping rel of the following select statement gives us the exact information

content of the logging specification following execution of an OpenMRS session:

select time, "getPatient", uname, patient_name

from GetPatL, User, Patient

where GetPatL.uid = User.uid and GetPatL.pid = Patient.pid

5.2 Reducing Memory Overhead

A source of overhead in our system is memory needed to store logging preconditions. We

observe that a naive implementation of the intended semantics will add all trigger functions to

the logging preconditions, regardless of whether they are redundant in some way. To optimize

memory usage, we therefore aim to refrain from adding information about trigger invocations

if it is unnecessary for future derivations of audit log information. As a simple example, in

the following logging specification it suffices to add only the first invocation of g to the set of

logging preconditions to infer the relevant logging information.

∀t0, t1, x0, x1 .Call(t0, f , x0) ∧ Call(t1,g, x1) ∧ t1 < t0 =⇒ LoggedCall(t0, f , x0).

Intuitively, our general approach is to rewrite the body of a given logging specification in a

form consisting of different conjuncts, such that the truth valuation of each conjunct is indepen-

dent of the others. This way, the required information to derive each conjunct is independent of

the information required for other conjuncts. Then, if the inference of a LoggedCall predicate

needs a conjunct to be derived only once during the program execution, we can limit the amount

of information required to derive that conjunct to the point where it is derivable, without affect-

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 54

ing the derivability of other conjuncts. In other words, following derivation of that conjunct,

triggers in the conjunct are “turned off”, i.e. no longer added to logging preconditions when

encountered during execution.

Formally, the logging specification is rewritten in the form

∀t0, . . . , tn, x0, . . . , xn .
n∧
i=1

(ti < t0)
L∧
k=1

Qk =⇒ LoggedCall(t0,g0, x0),

where each Qk is a conjunct of literals with independent truth valuation resting on disjointness

of predicated variables. In what follows, a formal description of the technique is given.

Since we have a linear computational model, the predicates corresponding to the timestamp

comparisons (ti < t0) do not play a significant role in the inference of LoggedCall predicates.

There reason is, at any point in time, the set of logging preconditions only contain function

invocations that have been occurred in the past, i.e., if the logging event is invoked at timestamp

t0, then ti < t0 holds for all trigger invocation timetamps ti that are retained in the set of logging

preconditions. In what follows, a formal description of the technique is given.

Consider the Definition 4.2.1, where g0 = Logevent(LS). Let ϕi′((x0, t0), . . . , (xn, tn))s

be positive literals and φ((x0, t0), . . . , (xn, tn)) ,
∧n′

i′=1 ϕi′((x0, t0), . . . , (xn, tn)). Then,

we define the set Ψ , {ϕi′((x0, t0), . . . , (xn, tn)) | i′ ∈ 1 · · ·n′} ∪ {(Call(ti,gi, xi)) | i ∈

0 · · ·n}. Moreover, let’s denote the set of free variables of a formula φ as FV (φ), and abuse

this notation to represent the set of free variables that exist in a set of formulas. Then, FV (Ψ) =

{x0, · · · , xn, t0, · · · , tn}. Next, we define the relation, ~FV over free variables of positive

literals in Ψ, which represents whether they are free variables of the same literal.

Definition 5.2.1 Let ~FV ⊆ FV (Ψ) × FV (Ψ) be a relation where α ~FV β iff there exists

some literal P ∈ Ψ such that α, β ∈ FV (P). Then, the transitive closure of ~FV is denoted

by ~TFV .

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 55

Lemma 5.2.1 ~FV is reflexive and symmetric.

Corollary 5.2.1 ~TFV is an equivalence relation and so, partitions FV (Ψ)

Let [α]~TFV denote the equivalence class induced by ~TFV overFV (Ψ), where [α]~TFV ,

{β | α ~TFV β}. Intuitively, each equivalence class [α]~TFV represents a set of free variables

in Ψ that are free in a subset of literals of Ψ, transitively. To be explicit about these subsets of

literals, we have the following definition (Definition 5.2.2). Note that rather than representing

an equivalence class using a representative α (i.e., the notation [α]~TFV), we may employ an

enumeration of these classes and denote each class as Ck, where k ∈ 1 · · ·L. L represents the

number of equivalence classes that have partitioned FV (Ψ). In order to map these two nota-

tions, we consider a mapping ω : FV (Ψ)→ {1, · · · , L} where ω(α) = k if [α]~TFV = Ck.

Definition 5.2.2 Let C be an equivalence class induced by ~TFV . The predicate class PC is

a subset of literals of Ψ defined as PC , {P ∈ Ψ | FV (P) ⊆ C}. We define the independent

conjuncts asQC ,
∧
P∈PC

P . We also denoteQ[α] asQk if ω(α) = k. Obviously, FV (Qk) =

Ck.

Lemma 5.2.2 Let C1, · · · , CL be all the equivalence classes induced by ~TFV over FV (Ψ).

Then, PC1 , · · · ,PCL
give a partition on Ψ.

Proof. We need to show that

• for all distinct k, k′ ∈ 1 · · ·L, PCk
∩ PCk′ = ∅:

By contradiction: Let k, k′ ∈ 1 · · ·L be specific distinct indexes where PCk
∩ PCk′ 6= ∅,

i.e., there exists some P ∈ Ψ, such that P ∈ PCk
and P ∈ PCk′ . Then, according to the

definition, we have FV (P) ⊆ Ck and FV (P) ⊆ Ck′ . Since FV (P) is non-empty, we

would have Ck∩Ck′ 6= ∅, which contradicts with Ck and Ck′ being classes over FV (Ψ).

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 56

•
⋃L
k=1 PCk

= Ψ:

Obviously,
⋃L
k=1 PCk

⊆ Ψby the definition of predicate classes. It only suffices to show

that
⋃L
k=1 PCk

⊇ Ψ. Let P ∈ Ψ. Since FV (P) 6= ∅, there exists some α ∈ FV (P).

Considering the equivalence class [α]~TFV , we will then have FV (P) ⊆ [α]~TFV . This

entails that P ∈ P[α]~TFV
and so, P ∈

⋃L
k=1 PCk

.

ut

In order to specify and prove the correctness of the proposed technique, a new calculus

Λ′log is formalized with memory overhead mitigation capabilities. In what follows the details

of this calculus and the correctness result are given. Moreover, a developed example of how

these techniques could be applied to a sample logging specification in Calls is discussed, later

in this Section.

The given techniques are implemented in the OpenMRS retrospective security module as a

case study.

5.2.1 Language with Memory Overhead Mitigation

The language Λlog is given in Chapter 4 whose syntax includes a command to track logging pre-

conditions (callEvent(gi, v)) and a command to emit log entries (emit(gi, v)). Configurations

are quintuples of the form κ ::= (e,X, n,L, C) which include a set X of logging precondtions

(sometimes referred to as “database”), and an audit log L. The semantics of Λlog includes the

rule Precondition to update the set of logging preconditions.

The language Λ′log has the same syntax as Λlog. The configurations, however, have an

additional component W which is a set of function names. It is used to keep track of functions

that we do not require to add their invocation information to the database any more. By adding

some trigger name gi to W , we indicate that further additions of information regarding gi

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 57

invocations to X will not cause new LoggedCall predicates to be derived.

κ ::= (e,X, n,L, C,W) configurations

All stepwise reduction rules in this language are the same as the ones in Λlog, except for

Precondition. Instead of that rule, we impose the set of rules in Figure 5.3. Note that XG

denotes the guidelines database. For the sake of brevity, we will omit ~TFV from the class

notations onward.

The rule Precondition-1 states that if a trigger is invoked, but is already added to the set W ,

according to the semantics of W , we do not add the invocation to the database. The remaining

rules consider the other case, i.e., the trigger is not already added to W . The rule Precondition-

2 expresses the case where the trigger gi is not in W , and there are no literals except for

Call(ti,gi, xi) with xi or ti as free variables. In this case, the invocation is added to database

and the trigger name is added to the set W , in order to avoid further addition of invocations

to this trigger. If there are literals other than Call(ti,gi, xi) with free variables xi or ti, but

the free variables of all those literals are restricted to xi and ti, we study the derivability of

the ground form of Q[ti] considering the new invocation. Notice that FV (Q[ti]) = {xi, ti}.

If the ground form of Q[ti] is derivable, then the invocation is added to the database. The

trigger name is also added to W (Precondition-4). Otherwise, the invocation is not added to the

database (Precondition-3). The reason is, keeping the invocation information in the database

will not help deriving a ground form of Q[ti] in the future steps.

If there are literals other than Call(ti,gi, xi) with free variables xi or ti, and the free vari-

ables of those literals are not restricted to xi and ti, but exclude x0 and t0, then the derivability

of Q[ti] is studied. In this case, the set of free variables of Q[ti] is [ti], for sure. If a ground form

of Q[ti] is derivable, then the invocation is added to the database and the trigger names whose

timestamp and argument variable are in [ti] are added to W (Precondition-6). Otherwise, the

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 58

Precondition-1
i ∈ 1 · · ·n gi ∈W

(callEvent(gi, v); e,X, n,L, C,W)→ (e,X, n,L, C,W)

Precondition-2
i ∈ 1 · · ·n gi /∈W P[ti]

− {Call(ti,gi, xi)} = ∅
(callEvent(gi, v); e,X, n,L, C,W)→ (e,X ∪ {Call(n− 1,gi, v)}, n,L, C,W ∪ {gi})

Precondition-3
i ∈ 1 · · ·n gi /∈W

P[ti]
− {Call(ti,gi, xi)} 6= ∅ [ti]− {xi, ti} = ∅ X ∪ {Call(n− 1,gi, v)} ∪XG 0 Q[ti]

[
n− 1/ti

][
v/xi

]
(callEvent(gi, v); e,X, n,L, C,W)→ (e,X, n,L, C,W)

Precondition-4
i ∈ 1 · · ·n gi /∈W

P[ti]
− {Call(ti,gi, xi)} 6= ∅ [ti]− {xi, ti} = ∅ X ∪ {Call(n− 1,gi, v)} ∪XG ` Q[ti]

[
n− 1/ti

][
v/xi

]
(callEvent(gi, v); e,X, n,L, C,W)→ (e,X ∪ {Call(n− 1,gi, v)}, n,L, C,W ∪ {gi})

Precondition-5
i ∈ 1 · · ·n gi /∈W P[ti]

− {Call(ti,gi, xi)} 6= ∅
[ti]− {xi, ti} 6= ∅ [ti]− {x0, t0} = ∅ @āi . X ∪ {Call(n− 1,gi, v)} ∪XG ` Q[ti]

[
āi/ᾱi

][
n− 1/ti

][
v/xi

]
(callEvent(gi, v); e,X, n,L, C,W)→ (e,X ∪ {Call(n− 1,gi, v)}, n,L, C,W)

Precondition-6
i ∈ 1 · · ·n gi /∈W P[ti]

− {Call(ti,gi, xi)} 6= ∅
[ti]− {xi, ti} 6= ∅ [ti]− {x0, t0} = ∅ ∃āi . X ∪ {Call(n− 1,gi, v)} ∪XG ` Q[ti]

[
āi/ᾱi

][
n− 1/ti

][
v/xi

]
(callEvent(gi, v); e,X, n,L, C,W)→ (e,X ∪ {Call(n− 1,gi, v)}, n,L, C,W ∪ti′∈[ti]

{gi′})

Precondition-7
i ∈ 1 · · ·n gi /∈W P[ti]

− {Call(ti,gi, xi)} 6= ∅ [ti]− {xi, ti} 6= ∅ [ti]− {x0, t0} 6= ∅
(callEvent(gi, v); e,X, n,L, C,W)→ (e,X ∪ {Call(n− 1,gi, v)}, n,L, C,W)

Precondition-8

(callEvent(g0, v); e,X, n,L, C,W)→ (e,X ∪ {Call(n− 1,g0, v)}, n,L, C,W)

Figure 5.3: Precondition rules for Λ′log.

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 59

invocation is still added to the database (Precondition-5) but the trigger name is not added toW .

The reason is, keeping the invocation information in the database might help derive a ground

form of Q[ti] in the future steps, since there exist free variables other than xi and ti in Q[ti] that

could be substituted with proper values so that Q[ti] could be derived. Note that ᾱi represents a

sequence of free variables [ti]− {xi, ti} and āi is a sequence of timestamps and values, except

for the timestamp and argument value of trigger i. Moreover,
[
āi/ᾱi

]
denotes the substitution

of values to their corresponding variables.

The rule Precondition-7 discusses the remaining case for triggers, that is when there are

literals other than Call(ti,gi, xi) with free variables xi or ti, the free variables of those literals

are not restricted to xi and ti, and include x0 or t0. Then, the invocation is added to the

database but the trigger name is not added to W , independent of whether a ground form of

Q[ti] is derivable or not. If a ground form of Q[ti] is not derivable at the moment, keeping the

invocation information in the database might help derive a ground form of Q[ti] in the future

steps, since there exist free variables other than xi and ti in Q[ti] that could be substituted with

proper values so that a ground form of Q[ti] could be derived. Otherwise, if a ground form of

Q[ti] is derivable, we might still need to add future invocations of gi and other triggers whose

timestamp and argument variables are in [ti]. That is why, we avoid adding trigger names to

W . This is due to the fact that Q[ti] includes invocation to the logging event and possibly

other predicates defined over its timestamp and argument variable (t0 and x0). Thus, future

derivations of Q[ti] could be affected.

This represents a major difference between the case when Q[ti] includes {x0, t0} and the

case Q[ti] excludes these variables. In the latter case, it is only required to derive a ground

form of Q[ti] once during program execution, in order to study whether LoggedCall predicates

could be inferred. Therefore, whenever a ground form of Q[ti] is derivable at the time of gi

invocation, W is beefed up with the corresponding trigger names. In the prior case, however,

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 60

it is required to derive all possible ground forms of Q[ti], so that we would be able to infer all

possible LoggedCall predicates.

The last rule (Precondition-8) discusses the case where the logging event is invoked. Since

we need to infer all possible LoggedCall predicates, we add all those invocations to the database.

5.2.2 Correctness of Memory Overhead Mitigation

In order to study the executional behaviour of programs in Λ′log compared to the case where

they are executing in Λlog, we need to understand the relationship between the set of logging

preconditions in these languages. To this end, we develop an algorithm that generates the

reduced database and the set W of trigger names, out of a full-blown database of logging

preconditions. The algorithm Refine is defined in Figure 5.4. We denote the reduced set of

logging preconditions X as R(X), and the generated set of trigger names as W(X), defined

as follows.

R(X) , fst(Refine X [] ∅),

W(X) , snd(Refine X [] ∅).

We do not express any explicit mapping between sets and sorted lists in our formulation

for the sake of brevity. The employment of sets and their corresponding sorted lists are clear

from the context. Let’s denote the restriction of a set X to timestamps less than or equal to n,

as X|n.

In what follows, Lemmas 5.2.3 to 5.2.7 discuss properties of R(X) and W(X). Lemma

5.2.7, in particular, shows that R(X) is enough to derive all LoggedCall predicates that are

derivable from X . Lemma 5.2.8 states that in a single reduction step, the reduced set of log-

ging preconditions is preserved and the generated audit log is maintained, which then can be

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 61

1: function REFINE: Sorted list of invocation facts→ Sorted list of invocation facts→ Set of trigger names→ (Sorted list of
invocation facts × Set of trigger names)

2: Refine [] Y W = (Y,W)
3: Refine ((Call(n,gi, v)) :: X) Y W =
4: if i ∈ 1 · · ·n then
5: if gi ∈W then
6: Refine X Y W
7: else
8: if P[ti]

− {Call(ti,gi, xi)} = ∅ then
9: Refine X (Y + [Call(n,gi, v)]) (W ∪ {gi})

10: else
11: if [ti]− {xi, ti} = ∅ then
12: if Y ∪ {Call(n− 1,gi, v)} ∪XG 0 Q[ti]

[
n− 1/ti

][
v/xi

]
then

13: Refine X Y W
14: else
15: Refine X (Y + [Call(n,gi, v)]) (W ∪ {gi})
16: end if
17: else
18: if [ti] ∩ {x0, t0} = ∅ then
19: if @āi . Y ∪ {Call(n,gi, v)} ∪XG `

Q[ti]

[
āi/ᾱi

][
n/ti

][
v/xi

]
then

20: Refine X (Y + [Call(n,gi, v)]) W
21: else
22: Refine X (Y + [Call(n,gi, v)]) (W ∪ti′∈[ti]

{gi′})
23: end if
24: else
25: Refine X (Y + [Call(n,gi, v)]) W
26: end if
27: end if
28: end if
29: end if
30: else
31: Refine X (Y + [Call(n,gi, v)]) W
32: end if
33: end function

Figure 5.4: Refine algorithm

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 62

generalized straightforwardly to multi-step reduction, in Theorem 5.2.1. Then, Corollary 5.2.2

gives us our intended result, which states that a program could be evaluated in Λ′log with reduced

set of logging preconditions and the same audit log.

Lemma 5.2.3 Let X be a set of logging preconditions. For all i ∈ 1 · · ·n, if ti ∈ [t0] then

gi /∈ W(X).

Proof. Since ti ∈ [t0], [ti] = [t0] and so [ti] − {x0, t0} 6= ∅. Thus, for each invocation

information of gi in X , only line 25 of Figure 5.4 is executed. Obviously, gi is not added to W

in this line. ut

Lemma 5.2.4 For all i ∈ 0 · · ·n, if ti ∈ [t0] and Call(n,gi, v) ∈ X , then Call(n,gi, v) ∈

R(X).

Proof. First let’s consider the case where i = 0. Then, according to line 31 of Figure 5.4,

Call(n,gi, v) ∈ R(X). Now, let i ∈ 1 · · ·n. According to Lemma 5.2.3, gi /∈ W(X) and

so gi /∈ W(X|n−1). This implies that only line 25 of Figure 5.4 is can be executed for gi, in

which the invocation to gi is added to Y , which then is reflected inR(X). ut

Let t̄(k) and x̄(k) denote sequences of timestamp and function argument variables respec-

tively, that are in class Ck. Similarly, s̄(k) and v̄(k) are used to denote sequences of timestamp

and function argument values that substitute t̄(k) and x̄(k).

Lemma 5.2.5 Let i ∈ 1 · · ·n. Suppose X ∪XG ` Qω(i)

[
s̄(ω(i))/t̄(ω(i))

][
v̄(ω(i))/x̄(ω(i))

]
for some timestamp and argument value sequences s̄(ω(i)) and v̄(ω(i)). If Call(si′ ,gi′ , vi′) ∈

X and Call(si′ ,gi′ , vi′) /∈ R(X) for some i′ such that ti′ ∈ [ti], then gi′ ∈ W(X|si′−1).

Proof. Let’s assume gi′ /∈ W(X|si′−1). Since Call(si′ ,gi′ , vi′) ∈ X and Call(si′ ,gi′ , vi′) /∈

R(X), we need to follow Refine algorithm to extract the places where the invocation informa-

tion is not added to Y . The only place with such a property is line 13 (other than line 6 which

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 63

is refuted by the assumption). Then, P[ti′]
− {Call(ti′ ,gi′ , xi′)} = ∅, [ti′] − {xi′ , ti′} = ∅,

and X|si′−1 ∪ {Call(si′ − 1,gi′ , vi′)} ∪XG 0 Q[ti′]

[
si′ − 1/ti′

][
vi′/xi′

]
. The latter result is

in contradiction with the general form X ∪ XG ` Qω(i)

[
s̄(ω(i))/t̄(ω(i))

][
v̄(ω(i))/x̄(ω(i))

]
considering the fact that ω(i) = ω(i′) due to ti′ ∈ [ti], and also Q[ti] = Qω(i′). ut

Lemma 5.2.6 Let X be a set of logging preconditions. For all i ∈ 1 · · ·n, if gi ∈ W(X), then

there exist some n, v, and āi such that Call(n,gi, v) ∈ R(X) and

R(X) ∪XG ` Q[ti]

[
āi/ᾱi

][
n/ti

][
v/xi

]
.

Proof. The only places where a trigger is added to W in Figure 5.4 are the lines 9, 15, and 22.

In line 9, invocation to gi is added to Y , which then is reflected in R(X). Moreover, this line

is executed whenever P[ti] −{Call(ti,gi, xi)} = ∅. Thus, for this case Q[ti] = Call(ti,gi, xi).

Then, since Call(n,gi, v) ∈ R(X), R(X) ∪ XG ` Call(n,gi, v). In line 15, similar to line

9, invocation to gi is added to Y , so Call(n,gi, v) ∈ R(X). Moreover, this line is executed

provided the condition in lines 12 does not hold. This ensures the derivation of the ground form

of Q[ti]. The line 22 is executed if the condition in lines 19 does not hold. Therefore, a ground

form of Q[ti] should be derivable. This entails that for all ti′ ∈ [ti], there exist some n′ and

v′ such that Call(n′,gi′ , v
′) ∈ Y ∪ {Call(n,gi, v)}. As Y ∪ {Call(n,gi, v)} is reflected in

R(X), the proof is complete. ut

Lemma 5.2.7 IfX∪XG ` LoggedCall(s0,g0, v0) thenR(X)∪XG ` LoggedCall(s0,g0, v0).

Proof. X ∪ XG ` LoggedCall(s0,g0, v0) entails that there exist s1, · · · , sn, v1, · · · , vn such

that X ∪ XG `
∧n
i=1(si < s0)

∧L
k=1Qk

[
s̄(k)/t̄(k)

][
v̄(k)/x̄(k)

]
. It implies that for all i ∈

0 · · ·n, Call(si,gi, vi) ∈ X . For each i ∈ 0 · · ·n, we consider the following two cases:

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 64

• [ti] = [t0]: Then, ti ∈ [t0]. Since Call(si,gi, vi) ∈ X , Lemma 5.2.4 implies that

Call(si,gi, vi) ∈ R(X). Then,

R(X) ∪XG ` (si < s0) ∧Qω(i)

[
s̄(ω(i))/t̄(ω(i))

][
v̄(ω(i))/x̄(ω(i))

]
.

• [ti] 6= [t0]: Then, [ti]− {x0, t0} = ∅. Now, we consider the following two subcases:

– For all ti′ ∈ [ti], if Call(si′ ,gi′ , vi′) ∈ X then Call(si′ ,gi′ , vi′) ∈ R(X). Then

obviously (si < s0) and Qω(i)

[
s̄(ω(i))/t̄(ω(i))

][
v̄(ω(i))/x̄(ω(i))

]
are provable

under assumptionR(X) ∪XG.

– There exists some ti′ ∈ [ti] such that Call(si′ ,gi′ , vi′) ∈ X and Call(si′ ,gi′ , vi′) /∈

R(X). Then, by Lemma 5.2.5, gi′ ∈ W(X|si′−1), which implies that gi′ ∈ W(X).

Using Lemma 5.2.6, we conclude that there exist some n ≤ si′ − 1, v, and āi′ such

that Call(n,gi′ , v) ∈ R(X) and R(X) ∪ XG ` Q[ti′]

[
āi′/ᾱi′

]⋂
n/ti′

][
v/xi′

]
.

This entails thatR(X)∪XG ` (n < s0)∧Qω(i)

[
āi′/ᾱi′

][
n/ti′

][
v/xi′

]
consider-

ing the fact that Qω(i) = Q[ti′]
, as ti′ ∈ [ti].

Thus, R(X) ∪ XG suffices to derive ground forms of all Qω(i) and therefore R(X) ∪ XG `

LoggedCall(s0,g0, v0). ut

Lemma 5.2.8 If (e,X, n,L, C)→ (e′, X ′, n′,L′, C) in Λlog, then (e,R(X), n,L, C,W(X))→

(e′,R(X ′), n′,L′, C,W(X ′)) in Λ′log.

Proof. By induction on the derivation of (e,X, n,L, C) → (e′, X ′, n′,L′, C). The interesting

cases are the reduction of callEvent(gi, v) and emit(gi, v).

Let (callEvent(gi, v); e,X, n,L, C) → (e,X ∪ {Call(n − 1,gi, v)}, n,L, C). There are

eight cases in Λ′log, then. The first case is where i ∈ 1 · · ·n and gi ∈ W(X). Then,

(callEvent(gi, v); e,R(X), n,L, C,W(X)) → (e,R(X), n,L, C,W(X)). Then we need to

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 65

show thatR(X) = R(X ∪ {Call(n− 1,gi, v)}) andW(X) =W(X ∪ {Call(n− 1,gi, v)})

for this case, which hold based on line 6 of Refine in Figure 5.4. The other seven cases are

similarly provable based on the definition of Refine.

Let (emit(gi, v); e,X, n,L, C) → (e,X, n,L ∪ {LoggedCall(n − 1,gi, v)}, C). This

holds when X ∪ XG ` LoggedCall(n − 1,gi, v). Using Lemma 5.2.7, we then have RX ∪

XG ` LoggedCall(n−1,gi, v), which implies that (emit(gi, v); e,R(X), n,L, C,W(X))→

(e,R(X), n,L ∪ {LoggedCall(n− 1,gi, v)}, C,W(X)).

Let (emit(gi, v); e,X, n,L, C) → (e,X, n,L, C). Then X ∪ XG 0 LoggedCall(n −

1,gi, v). Since R(X) ⊆ X and the proof system is monotone, we conclude that R(X) ∪

XG 0 LoggedCall(n−1,gi, v). It then implies that (emit(gi, v); e,R(X), n,L, C,W(X))→

(e,R(X), n,L, C,W(X)).

ut

Theorem 5.2.1 If (e,X, n,L, C)→∗ (e′, X ′, n′,L′, C) in Λlog, then

(e,R(X), n,L, C,W(X))→∗ (e′,R(X ′), n′,L′, C,W(X ′))

in Λ′log.

Proof. It is straightforward by induction on the derivation of (e,X, n,L, C)→∗ (e′, X ′, n′,L′, C)

using the result of Lemma 5.2.8. ut

The following corollary states the correctness in the sense that a program could be evaluated

in Λ′log with reduced set of logging preconditions and the same audit log as it is evaluated in

Λlog.

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 66

Corollary 5.2.2 If (e, ∅, 0, ∅, C)→∗ (v,X, n,L, C) in Λlog, then

(e, ∅, 0, ∅, C, ∅)→∗ (v,R(X), n,L, C,W(X))

in Λ′log.

5.2.3 An Example

Consider the following logging specification.

∀t0, . . . , t4, x0, . . . , x4 .Call(t0,g0, x0)
4∧
i=1

(Call(ti,gi, xi) ∧ ti < t0) ∧

t1 < t2 ∧ x1%2 = 0 ∧ x3 = x4 ∧HasSecLevel(x4, secret)∧

Includes(x0, x4) =⇒ LoggedCall(t0,g0, x0).

Then,

Ψ = {Call(ti,gi, xi) | i ∈ 0 · · · 4} ∪ {t1 < t2, x1%2 = 0, x3 = x4,

HasSecLevel(x4, secret), Includes(x0, x4)}

and obviously FV (Ψ) = {ti, xi | i ∈ 0 · · · 4}. Note that each literal could be defined inten-

sionally or extensionally beside the guideline.

Then, the relation ~FV includes several pairs including (t1, t2), (x3, x4), (x4, x0) and (ti, xi)

for all i ∈ {0, · · · , 4}

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 67

We then have the following equivalence classes:

C1 = {t1, x1, t2, x2},

C2 = {t0, x0, t3, x3, t4, x4}.

Note that ω(1) = ω(2) = 1 and ω(0) = ω(3) = ω(4) = 2. As an example, t̄(2) = t0, t3, t4 is

a possible sequence of timestamp variables of class C2.

This implies the following predicate classes in Ψ:

PC1 = {Call(t1,g1, x1),Call(t2,g2, x2), t1 < t2, x1%2 = 0},

PC2 = {Call(t0,g0, x0),Call(t3,g3, x3),Call(t4,g4, x4), x3 = x4,

HasSecLevel(x4, secret), Includes(x0, x4)}.

Then, Q1 and Q2 could be defined accordingly.

Q1 = Call(t1,g1, x1) ∧ Call(t2,g2, x2) ∧ t1 < t2 ∧ x1%2 = 0,

Q2 =Call(t0,g0, x0) ∧ Call(t3,g3, x3) ∧ Call(t4,g4, x4) ∧ x3 = x4∧

HasSecLevel(x4, secret) ∧ Includes(x0, x4).

Let X = {Call(2,g1, 4)} and W = ∅. We know that Q[t2] = Q1 and Q[t4] = Q2. We then

have

X ∪ {Call(6,g2, 5)} ∪XG ` Q[t2]

[
2/t1

][
4/x1

][
6/t2

][
5/x2

]
.

CHAPTER 5. CASE STUDY ON A MEDICAL RECORDS SYSTEM 68

Therefore, according to Precondition-6 we would have

(callEvent(g2, 5); e,{Call(2,g1, 4)}, 7,L, C, ∅)→

(e, {Call(2,g1, 4),Call(6,g2, 5)}, 7,L, C, {g1,g2}).

Since a ground form of Q[t2] is derived, we add both g1 and g2 to W to ensure that we will not

add any invocation information of these triggers to X , any more.

Now suppose X has grown to be

X = {Call(2,g1, 4),Call(6,g2, 5),Call(11,g3, 7),Call(16,g0, [5, 7, 9])}.

Note that the argument to g0 is a list. At time 16, LoggedCall is not derivable as one of triggers

(g4) has not been called yet. We then have

X ∪ {Call(25,g4, 7)} ∪XG ` Q[t4]

[
11/t3

][
7/x3

][
16/t0

][
[5, 7, 9]/x0

][
25/t4

][
7/x4

]
,

assuming thatXG ` HasSecLevel(7, secret). Then, according to Precondition-7 we will have

(callEvent(g4, 7); e,X, 26,L, C, {g1,g2})→

(e,X ∪ {Call(25,g4, 7)}, 26,L, C, {g1,g2}).

Despite the fact that a ground form of Q[t4] is derived, W is not extended with trigger names,

e.g., g4. This helps us adding invocations of these triggers to X in the future, which might

help derive LoggedCall predicates that otherwise we were not able to derive. For instance,

in this example, if Call(27,g3, 2), Call(31,g4, 2), and Call(34,g0, [1, 4, 2]) are added later

to the set of logging preconditions, LoggedCall(34,g0, [1, 4, 2]) is derivable (assuming that

XG ` HasSecLevel(2, secret)).

Chapter 6

Related Work and Conclusion

6.1 Related Work

Previous work by DeYoung et al. has studied audit policy specification for medical (HIPAA)

and business (GLBA) processes [39, 40, 41]. This work illustrates the effectiveness and gener-

ality of a temporal logic foundation for audit policy specification, which is well-founded in a

general theory of privacy [22]. Their auditing system has also been implemented in a tool sim-

ilar to an interactive theorem prover [29]. Their specification language inspired our approach

to logging specification semantics. However, this previous work assumes that audit logs are

given, and does not consider the correctness of logs. Some work does consider trustworthi-

ness of logs [42], but only in terms of tampering (malleability). In contrast, our work provides

formal foundations for the correctness of audit logs, and considers algorithms to automatically

instrument programs to generate correct logs.

Other work applies formal methods (including predicate logics [43, 30], process calculi and

game theory [44]) to model, specify, and enforce auditing and accountability requirements in

distributed systems. In that work, audit logs serve as evidence of resource access rights, an idea

69

CHAPTER 6. RELATED WORK AND CONCLUSION 70

also explored in Aura [16] and the APPLE system [45]. In Aura, audit logs record machine-

checkable proofs of compliance in the Aura policy language. APPLE proposes a framework

based on trust management and audit logic with log generation functionality for a limited set

of operations, in order to check user compliance.

In contrast, we provide a formal foundation to support a broad class of logging specifica-

tions and relevant correctness conditions. In this respect our proposed system is closely related

to PQL [46], which supports program rewriting with instrumentation to answer queries about

program execution. From a technical perspective, our approach is also related to trace matching

in AspectJ [27], especially in the use of logic to specify trace patterns. However, the concern

in that work is aspect pointcut specification, not logging correctness, and their method call

patterns are restricted to be regular expressions with no conditions on arguments, whereas the

latter is needed for the specifications in Calls.

Logging specifications are related to safety properties [13] and are enforceable by security

automata, as we have shown. Hence IRM rewriting techniques could be used to implement

them [14]. However, the theory of safety properties does not address correctness of audit logs

as we do, and our approach can be viewed as a logging-specific IRM strategy.

Guts et al. [47] develop a static technique to guarantee that programs are properly in-

strumented to generate audit logs with sufficient evidence for auditing purposes. As in our

research, this is accomplished by first defining a formal semantics of auditing. However, they

are interested in evidence-based auditing for specific distributed protocols.

Other recent work [8] has proposed log filters as a required improvement to the current

logging practices in the industry due to costly resource consumption and the loss of necessary

log information among the collected redundant data. This work is purely empirical, not founda-

tional, but provides practical evidence of the relevance of our efforts since logging filters could

be defined as logging specifications.

CHAPTER 6. RELATED WORK AND CONCLUSION 71

Audit logs can be considered a form of provenance: the history of computation and data.

Several recent works have considered formal semantics of provenance [48, 49]. Cheney [50]

presents a framework for provenance, built on a notion of system traces. Recently, W3C has

proposed a data model for provenance, called PROV [51], which enjoys a formal description of

its specified constraints and inferences in first-order logic, [52], however the given semantics

does not cover the relationship between the provenance record and the actual system behavior.

6.2 Conclusion

In this work we have addressed the problem of audit log correctness. In particular, we have

considered how to separate logging specifications from implementations, and how to formally

establish that an implementation satisfies a specification. This separation allows security ad-

ministrators to clearly define logging goals independently from programs, and inspires pro-

gram rewriting tools that support correct, automatic instrumentation of logging specifications

in legacy code.

By leveraging the theory of information algebra, we have defined a semantics of logging

specifications as functions from program traces to information. By interpreting audit logs as

information, we are then able to establish correctness conditions for audit logs via an informa-

tion containment relation between log information and logging specification semantics. These

conditions allow proof of correctness of program rewriting algorithms that automatically instru-

ment general classes of logging specifications. To demonstrate, we define a prototype rewriting

algorithm for a functional calculus that instruments a class of logging specifications defined in

first order logic, and prove the algorithm correct.

Bibliography

[1] Butler W. Lampson. Computer security in the real world. IEEE Computer, 37(6):37–46,

2004.

[2] Dean Povey. Optimistic security: A new access control paradigm. In Proceedings of the

1999 Workshop on New Security Paradigms, pages 40–45, 1999.

[3] Daniel J. Weitzner. Beyond secrecy: New privacy protection strategies for open informa-

tion spaces. IEEE Internet Computing, 11(5):94–96, 2007.

[4] Audit finds employee access to patient files without apparent business or treatment pur-

pose. http://www.cpmc.org/about/press/News2015/phi.html, 2015.

Accessed: 2015-01-30.

[5] Daniel J. Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigenbaum, Ja<mes A.

Hendler, and Gerald J. Sussman. Information accountability. Communications of the

ACM, 51(6):82–87, 2008.

[6] Wen Zhang, You Chen, Thaddeus Cybulski, Daniel Fabbri, Carl A. Gunter, Patrick

Lawlor, David M. Liebovitz, and Bradley Malin. Decide now or decide later? Quantify-

ing the tradeoff between prospective and retrospective access decisions. In Proceedings

72

BIBLIOGRAPHY 73

of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pages

1182–1192, 2014.

[7] Jason Tyler King, Ben Smith, and Laurie Williams. Modifying without a trace: Gen-

eral audit guidelines are inadequate for open-source electronic health record audit mech-

anisms. In Proceedings of the 2nd ACM SIGHIT International Health Informatics Sym-

posium, pages 305–314. ACM, 2012.

[8] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin, Dongmei

Zhang, and Tao Xie. Where do developers log? An empirical study on logging practices in

industry. In Proceedings of the 36th International Conference on Software Engineering,

pages 24–33, 2014.

[9] Anton Chuvakin. Beautiful log handling. In Andy Oram and John Viega, editors, Beautiful

security: Leading security experts explain how they think. O’Reilly Media Inc., 2009.

[10] Richard A Kemmerer and Giovanni Vigna. Intrusion detection: A brief history and

overview. Computer, 35(4):27–30, 2002.

[11] Duncan Cook, Jacky Hartnett, Kevin Manderson, and Joel Scanlan. Catching spam be-

fore it arrives: Domain specific dynamic blacklists. In Proceedings of the Fourth Aus-

tralasian Symposium on Grid Computing and e-Research (AusGrid 2006) and the Fourth

Australasian Information Security Workshop, pages 193–202. Australian Computer Soci-

ety, Inc., 2006.

[12] J. Kohlas. Information Algebras: Generic Structures For Inference. Discrete mathematics

and theoretical computer science. Springer, 2003.

[13] Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and

System Security, 3(1):30–50, 2000.

BIBLIOGRAPHY 74

[14] Úlfar Erlingsson. The inlined reference monitor approach to security policy enforcement.

PhD thesis, Cornell University, 2003.

[15] OpenMRS. http://openmrs.org/, 2015. Accessed: 2015-09-27.

[16] Jeffrey A. Vaughan, Limin Jia, Karl Mazurak, and Steve Zdancewic. Evidence-based

audit. In Proceedings of the 21st IEEE Computer Security Foundations Symposium, pages

177–191, 2008.

[17] Divya Muthukumaran, Trent Jaeger, and Vinod Ganapathy. Leveraging “Choice” to au-

tomate authorization hook placement. In Proceedings of the 19th ACM Conference on

Computer and Communications Security, pages 145–156, October 2012.

[18] Dave King, Susmit Jha, Divya Muthukumaran, Trent Jaeger, Somesh Jha, and Sanjit A.

Seshia. Automating security mediation placement. In Proceedings of the 19th European

Symposium on Programming, pages 327–344, 2010.

[19] Peter Pharow and Bernd Blobel. Mobile health requires mobile security: Challenges,

solutions, and standardization. Studies in Health Technology and Informatics, 136:697–

702, 2008.

[20] David Kotz, Sasikanth Avancha, and Amit Baxi. A privacy framework for mobile health

and home-care systems. In Proceedings of the First ACM Workshop on Security and

Privacy in Medical and Home-care Systems, pages 1–12. ACM, 2009.

[21] Pam Matthews and Holly Gaebel. Break the glass. In HIE Topic Series. Healthcare

Information and Management Systems Society, 2009. http://www.himss.org/

files/himssorg/content/files/090909breaktheglass.pdf.

[22] Anupam Datta, Jeremiah Blocki, Nicolas Christin, Henry DeYoung, Deepak Garg, Limin

Jia, Dilsun Kirli Kaynar, and Arunesh Sinha. Understanding and protecting privacy: For-

BIBLIOGRAPHY 75

mal semantics and principled audit mechanisms. In Proceedings of the 7th International

Conference on Information Systems Security, pages 1–27, 2011.

[23] Juerg Kohlas and Juerg Schmid. An algebraic theory of information: An introduction and

survey. Information, 5(2):219–254, 2014.

[24] Usage statistics module. https://wiki.openmrs.org/display/docs/

Usage+Statistics+Module, 2010. Accessed: 2015-09-27.

[25] Debmalya Biswas and Valtteri Niemi. Transforming privacy policies to auditing specifi-

cations. In 13th IEEE International Symposium on High-Assurance Systems Engineering,

HASE 2011, Boca Raton, FL, USA, November 10-12, 2011, pages 368–375, 2011.

[26] Lujo Bauer, Jarred Ligatti, and David Walker. More enforceable security policies. Tech-

nical Report TR-649-02, Princeton University, June 2002.

[27] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren, Sascha

Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Ju-

lian Tibble. Adding trace matching with free variables to AspectJ. In Proceedings of

the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA,

pages 345–364, 2005.

[28] Alice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur Naik, and Alex Aiken. Statistical

debugging: Simultaneous identification of multiple bugs. In Proceedings of the 23rd

International Conference on Machine Learning, ICML ’06, pages 1105–1112, New York,

NY, USA, 2006. ACM.

[29] Deepak Garg, Limin Jia, and Anupam Datta. Policy auditing over incomplete logs: The-

BIBLIOGRAPHY 76

ory, implementation and applications. In Proceedings of the 18th ACM Conference on

Computer and Communications Security, pages 151–162, 2011.

[30] J. G. Cederquist, Ricardo Corin, M. A. C. Dekker, Sandro Etalle, J. I. den Hartog, and

Gabriele Lenzini. Audit-based compliance control. International Journal of Information

Security, 6(2-3):133–151, 2007.

[31] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always wanted to know about

Datalog (And never dared to ask). IEEE Transactions on Knowledge and Data Engineer-

ing, 1(1):146–166, 1989.

[32] Syed Zain Rizvi, Philip W. L. Fong, Jason Crampton, and James Sellwood. Relationship-

based access control for an open-source medical records system. In ACM Symposium on

Access Control Models and Technologies, 2015.

[33] Sepehr Amir-Mohammadian, Stephen Chong, and Christian Skalka. Coq formaliza-

tion of auditing correctness for core functional calculus. https://github.com/

sepehram/auditing-instrumentation-correctness, 2015.

[34] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic as a programming

language. Journal of the ACM, 23(4):733–742, October 1976.

[35] Sepehr Amir-Mohammadian, Stephen Chong, and Christian Skalka. Retrospec-

tive Security Module for OpenMRS. https://github.com/sepehram/

retro-security-openmrs, 2015.

[36] Spring framework. http://projects.spring.io/spring-framework/,

2015. Accessed: 2015-09-27.

[37] XSB. http://xsb.sourceforge.net/, 2012. Accessed: 2015-09-27.

BIBLIOGRAPHY 77

[38] Logic for your app. http://interprolog.com/, 2014. Accessed: 2015-09-27.

[39] Henry DeYoung, Deepak Garg, Limin Jia, Dilsun Kirli Kaynar, and Anupam Datta. Expe-

riences in the logical specification of the HIPAA and GLBA privacy laws. In Proceedings

of the 2010 ACM Workshop on Privacy in the Electronic Society, pages 73–82, 2010.

[40] Henry DeYoung, Deepak Garg, Dilsun Kaynar, and Anupam Datta. Logical specification

of the GLBA and HIPAA privacy laws. Technical Report CMU-CyLab-10-007, Carnegie

Mellon University, April 2010.

[41] Henry DeYoung, Deepak Garg, Limin Jia, Dilsun Kaynar, and Anupam Datta. Privacy

policy specification and audit in a fixed-point logic: How to enforce HIPAA, GLBA, and

all that. Technical Report CMU-CyLab-10-008, Carnegie Mellon University, April 2010.

[42] Benjamin Böck, David Huemer, and A. Min Tjoa. Towards more trustable log files for

digital forensics by means of “trusted computing”. In Proceedings of the 24th IEEE

International Conference on Advanced Information Networking and Applications, AINA

’10, pages 1020–1027, Washington, DC, USA, 2010. IEEE Computer Society.

[43] Ricardo Corin, Sandro Etalle, J. I. den Hartog, Gabriele Lenzini, and I. Staicu. A logic

for auditing accountability in decentralized systems. In Formal Aspects in Security and

Trust, pages 187–201, 2004.

[44] Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. Towards a theory of

accountability and audit. In Proceedings of the 14th European Symposium on Research

in Computer Security, pages 152–167, 2009.

[45] Sandro Etalle and William H. Winsborough. A posteriori compliance control. In Pro-

ceedings of the 12th ACM Symposium on Access Control Models and Technologies, pages

11–20, 2007.

BIBLIOGRAPHY 78

[46] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application errors and

security flaws using PQL: A program query language. In Proceedings of the 20th Annual

ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications, pages 365–383. ACM, 2005.

[47] Nataliya Guts, Cédric Fournet, and Francesco Zappa Nardelli. Reliable evidence: Au-

ditability by typing. In Proceedings of the 14th European Conference on Research in

Computer Security, ESORICS’09, pages 168–183, Berlin, Heidelberg, 2009. Springer-

Verlag.

[48] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and where: A characteriza-

tion of data provenance. Lecture Notes in Mathematics - Springer Verlag, pages 316–330,

2000.

[49] Peter Buneman, Adriane Chapman, and James Cheney. Provenance management in cu-

rated databases. In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, pages 539 – 550, 2006.

[50] James Cheney. A formal framework for provenance security. In Proceedings of the 24th

IEEE Computer Security Foundations Symposium, pages 281–293, 2011.

[51] Khalid Belhajjame, Reza B’Far, James Cheney, Sam Coppens, Stephen Cresswell,

Yolanda Gil, Paul Groth, Graham Klyne, Timothy Lebo, Jim McCusker, Simon Miles,

James Myers, Satya Sahoo, and Curt Tilmes. PROV-DM: The PROV data model.

http://www.w3.org/TR/2013/REC-prov-dm-20130430, 2013. Accessed:

2015-02-07.

[52] James Cheney. Semantics of the PROV data model. http://www.w3.org/TR/

2013/NOTE-prov-sem-20130430, 2013. Accessed: 2015-02-07.

