
Technical Report:
Correct Audit Logging in Concurrent Systems with

Negative Triggers

Sepehr Amir-Mohammadian

Dept. of Computer Science,
University of the Pacific, Stockton, CA

June 2021

Abstract

In previous work [3], we had proposed the semantics of correct audit log-
ging in concurrent systems using information algebra, and then had proposed
an implementation model in π-calculus that instruments programs to generate
correct audit logs according to the proposed semantic framework. The pro-
posed instrumentation algorithm receives audit logging requirements specified
in Horn clause logic that specify a collection of events (positive triggers) as
preconditions to log. In this work, we extend the formal specification of audit
logging requirements with negative triggers (along with positive ones) to boost
the expressivity of the audit logging policies, i.e., a collection of events that
should not happen as precondition to log. This way, our language of audit log-
ging requirement specifications goes beyond Horn clauses. We show that the
original instrumentation algorithm (from [3]) is potent enough to emit programs
that generate correct audit logs at runtime.

Keywords— Audit logging, Concurrent systems, Programming languages, Security

1 Semantics of Audit Logging

In order to provide a standalone formal presentation, in this section we review the
information-algebraic semantics of audit logging and the instantiation of the semantic
framework with first-order logic, which is originally proposed by Amir-Mohammadian
et al. [2]. We have applied minor modifications to the model to better suit concur-
rency and nondeterministic runtime behavior, inherent to concurrent systems.

1

1.1 Information-Algebraic Semantic Framework

In order to specify how audit logs are generated at runtime, we need to abstract
system states and their evolution through the computation. A system configuration
κ abstracts the state of the system at a given point during the execution. Let K
denote the set of system configurations. We posit a binary reduction relation among
configurations, i.e., (−→) ⊆ K × K which denotes the computational steps, and is
used in the standard infix form.1 A system trace τ is a potentially infinite sequence of
system configurations, i.e., τ = κ0κ1 · · · , where κi is the ith configuration in sequence,
and κi −→ κi+1. We denote the set of all traces by T , and define prefix (τ) as the set
of all prefixes of τ .

Information algebra is used to define the notion of correctness for audit logs. In
Section 1.2, we instantiate this abstract algebraic structure to model a specific class
of audit logging requirements. We define an information algebra in the following.

Definition 1.1 (Information algebra). An information algebra (Φ,Ψ) is a two-sorted
algebra consisting of an Abelian semigroup of information elements, Φ, as well as
a lattice of querying domains, Ψ. Two fundamental operators are presumed in this
algebra: a combination operator, (⊗) : Φ × Φ → Φ, and a focusing operator, (⇒) :
Φ×Ψ→ Φ. An Information algebra (Φ,Ψ) satisfies a set of properties, in connection
to combination and focusing operators.2 We let X, Y, Z, · · · to range over elements
of Φ, and E range over Ψ.

X, Y ∈ Φ are information elements that can be combined to make a more inclusive
information element X ⊗ Y . E ∈ Ψ is a querying domain with a certain level of
granularity that is used by the focusing operator to extract information from an
information element X, denoted by X⇒E. For example, relational algebra is an
instance of information algebra, in which relations instantiate information elements,
sets of attributes instantiate querying domains, natural join of two relations defines
the combination operator, and projection of a relation on a set of attributes defines
the focusing operator [6].

Combination of information elements induces a partial order relation (4) ⊆ Φ×Φ
among information elements, defined as follows: X 4 Y iff X ⊗ Y = Y . Intuitively,
X 4 Y means that Y contains the information element X.

As part of the semantics of audit logging, we treat execution traces as information
elements, i.e., the information content of the execution trace. To this end, we posit
b·c : T → Φ as a mapping in which, intuitively, bτc refers to the information content
of the trace τ . We also impose the condition that b·c be injective and monotonically
increasing, i.e., if τ ′ ∈ prefix (τ) then bτ ′c 4 bτc. This ensure that as the execution
trace grows in length, it contains more information.

1A notational convention throughout the paper is that infix operators and relations are wrapped
with parentheses when their signature are specified.

2We avoid discussing these properties in detail here for the sake of brevity. Readers are referred
to [6] for the complete formulation.

2

In the following definition, we define audit logging requirements in an abstract
form. We call this abstraction a logging specification. This definition is abstract
enough to encompass different execution models, as well as different representations
of information. In Sections 1.2 and 2.2, we instantiate this definition with a more
concrete structure that guides us on how to implement audit logging requirements.

Definition 1.2 (Logging specifications). Logging specification LS is defined as a
mapping from system traces to information elements, i.e., LS : T → Φ. Intuitively,
LS (τ) declares what information must be logged, if the system follows the execution
trace τ .

Note that even though b·c and LS have the same signature, i.e., maps from traces
to information elements, they are conceptually different. bτc is the whole information
contained in τ , whereas LS (τ) is the information that is supposed to be recorded in
the log, if the system follows the execution trace τ .

We denote an audit log with L which represents a set of data, gathered at runtime.
Let L denote the set of audit logs. In order to judge about the correctness of an audit
log, the information content of the audit log needs to be studied in comparison to
the information content of the trace that generates that audit log. To this end, we
define a mapping that returns the information content of an audit log. We abuse the
notation and consider b·c : L → Φ as such mapping. Therefore, bLc refers to the
information content of the audit log L. We assume that b·c on audit logs is injective
and monotonically increasing, i.e., if L ⊆ L′ then bLc 4 bL′c. Therefore, the more
inclusive the audit log is, it contains more information.

The notion of correct audit logging can be defined based on an execution trace
and a logging specification. To this end, the information content of the audit log is
compared to the information that the logging specification dictates to be recorded in
the log, given the execution trace. The following definition captures this relation.

Definition 1.3 (Correctness of audit logs). Audit log L is correct wrt a logging
specification LS and a system trace τ iff both bLc 4 LS (τ) and LS (τ) 4 bLc hold.
The former refers to the necessity of the information in the audit log, and the latter
refers to the sufficiency of those information.

A system that generates audit logs at runtime includes the stored logs as part of
its configuration. Let the mapping logof : K → L denote the residual log of a given
system configuration, i.e., logof (κ) is the set of all recorded audit logs in configuration
κ. It is natural to assume that the residual log within configurations grows larger as
the execution proceeds. The residual log of a trace is then defined using logof .

Definition 1.4 (Residual log of a system trace). The residual log of a finite system
trace τ is L, denoted by τ L, iff τ = κ0κ1 · · ·κn and logof (κn) = L.

Note that if τ L, then L is not necessarily correct wrt a given LS and a trace
τ . If the residual log of a trace is correct throughout the execution, then that trace

3

is called ideally-instrumented. System trace τ is ideally instrumented for a logging
specification LS iff for any trace τ ′ and audit log L, if τ ′ ∈ prefix (τ) and τ ′ L then
L is correct wrt τ ′ and LS . Indeed audit logging is an enforceable security property
on a trace of execution [2]. Given a logging specification, ideally-instrumented traces
induce a safety property [9], and hence implementable by inlined reference monitors
[4], and edit automata [1].

Let s be a concurrent system with an operational semantics. s ⇓ τ iff s can produce
trace τ ′, either deterministically or non-deterministically, and τ ∈ prefix (τ ′). We
abuse the notation and use κ ⇓ τ to denote the same concept for configuration κ. We
follow program instrumentation techniques, in order to enforce a logging specification
on a system. An instrumentation algorithm receives the concurrent system as input
along with the logging specification, and instruments the system with audit logging
capabilities so that the instrumented system generates the required “appropriate” log.
An instrumentation algorithm is a partial function I : (s,LS) 7→ s′ that instruments
s according to LS aiming to generate audit logs appropriate for LS . We call s the
source system, and the instrumented system, i.e., I(s,LS) = s′, the target system.
Source and target traces refer to the traces of the source and target systems, resp.

It is natural to expect that the instrumentation algorithm would not modify the
semantics of the original system drastically. The target system must behave roughly
similar to the source system, except for the operations related to audit logging. We call
this attribute of an instrumentation algorithm semantics preservation, and define it
in the following. This definition is abstract enough to encompass different source and
target systems (with different runtime semantics), and instrumentation techniques.
The abstraction relies on a binary relation :≈, called correspondence relation, that
relates the source and target traces. Based on different implementations of the source
and target systems, and the instrumentation algorithm, the correspondence relation
can be defined accordingly.

Definition 1.5 (Semantics preservation by the instrumentation algorithm). Instru-
mentation algorithm I is semantics preserving iff for all systems s and logging specifi-
cations LS , where I(s,LS) is defined, the following conditions hold: 1) For any trace
τ , if s ⇓ τ , then there exists some trace τ ′ such that I(s,LS) ⇓ τ ′, and τ :≈ τ ′. 2)
For any trace τ , if I(s,LS) ⇓ τ , then there exists some trace τ ′ such that s ⇓ τ ′, and
τ ′ :≈ τ .

Another property of the instrumentation algorithm is to ensure that it is deadlock-
free, meaning that instrumenting a system does not introduce new states being stuck.
Let source system s generate trace τ , and I(s,LS) generate trace τ ′ such that τ :≈ τ ′.
Then, we call I(s,LS) being stuck if s can continue execution following τ (at least
for one extra step), while I(s,LS) cannot continue execution following τ ′.

Definition 1.6 (Deadlock-freeness of the instrumentation algorithm). Instrumenta-
tion algorithm I is deadlock-free iff for any source system s, logging specification LS ,
traces τ and τ ′, and configuration κ, if s ⇓ τ , I(s,LS) ⇓ τ ′, τ :≈ τ ′, and s ⇓ τκ, then
there exists some configuration κ′ such that I(s,LS) ⇓ τ ′κ′.

4

Besides these properties, another important feature of an instrumentation al-
gorithm is the quality of audit logs generated by the instrumented system. The
information-algebraic semantic framework provides a platform to define correct in-
strumentation algorithms for audit logging purposes. Let s be a target system, and
τ be a source trace. Simulated logs of τ by s is the set simlogs(s, τ) defined as
simlogs(s, τ) = {L | ∃τ ′.s ⇓ τ ′ ∧ τ :≈ τ ′ ∧ τ ′ L}. Using this set, we can define
correctness of instrumentation algorithms in a straightforward manner. Intuitively,
the instrumentation algorithm I is correct if the instrumented system generates audit
logs that are correct wrt the logging specification and the source trace. This must
hold for any source system, any logging specification, and any possible log generated
by the instrumented system.

Definition 1.7 (Correctness of the instrumentation algorithm). Instrumentation al-
gorithm I is correct iff for all source systems s, traces τ , and logging specifications
LS , s ⇓ τ implies that for any L ∈ simlogs(I(s, LS), τ), L is correct wrt LS and τ .

1.2 Instantiation of Logging Specification

In Definition 1.2, logging specification is defined abstractly as a mapping from system
traces to information elements. For a more concrete setting, this definition needs to
be instantiated with appropriate structures in a way that is useful in the deployment
of audit logging. In essence, we need to instantiate information algebra (Definition
1.1). We are interested in logical specification of audit logging requirements due to its
easiness of use, expressivity power, well-understood semantics, and off-the-self logic
programming engines for subsets of first-order logic (FOL), e.g., Horn clause logic.
To this end, in this section, we instantiate information algebra with FOL, which is
expressive enough to specify computational events, and the temporal relation among
them. Indeed, other variants of logic may also be considered for this purpose.

In order to instantiate information algebra, it is required to specify the contents
of the set of information elements Φ and the lattice of querying domains Ψ, along
with the definitions of combination and focusing operators. Definitions 1.8, 1.9, and
1.10 accomplish these instantiations.

Definition 1.8 instantiates an FOL-based set of information elements. An infor-
mation element in our instantiation is a closed set of FOL formulas, under a proof-
theoretic deductive system.

Definition 1.8 (Set of closed sets of FOL formulas). Let ϕ range over FOL formulas,
and Γ range over sets of FOL formulas. Γ ` ϕ denotes a judgment derived by a sound
and complete natural deduction proof theory of FOL. We define closure operation
Closure as Closure(Γ) = {ϕ | Γ ` ϕ}. Then, the set of closed set of FOL formulas is
defined as ΦFOL = {Γ | Γ = Closure(Γ)}.

Definition 1.9 instantiates the lattice of querying domains for the FOL-based in-
formation algebra. A query domain is a subset of FOL, defined over certain predicate
symbols.

5

Definition 1.9 (Lattice of FOL sublanguages). Let Preds be the set of all assumed
predicate symbols along with their arities. If S ⊆ Preds , then we denote the sublan-
guage FOL(S) as the set of well-formed FOL formulas over predicate symbols in S.
The set of all such sublanguages ΨFOL = {FOL(S) | S ⊆ Preds} is a lattice induced
by set containment relation.

Lastly, Definition 1.10 instantiates the combination and focusing operators for the
FOL-based information algebra. Combination is the closure of the union of two sets
of formulas. Focusing is the closure of the intersection of an information element and
a query domain.

Definition 1.10 (Combination and focusing in (ΦFOL,ΨFOL)). Let (⊗) : ΦFOL ×
ΦFOL → ΦFOL be defined as Γ⊗Γ′ = Closure(Γ∪Γ′), and (⇒) : ΦFOL×ΨFOL → ΦFOL

be defined as Γ⇒FOL(S) = Closure(Γ ∩ FOL(S)).

(ΦFOL,ΨFOL) is an information algebra, given the Definitions 1.8, 1.9, and 1.10.3

In order to use (ΦFOL,ΨFOL) as a framework for audit logging, we also need to instan-
tiate the mapping b·c, introduced in Section 1.1, to interpret both execution traces
and audit logs as information elements.

Definition 1.11 (Mapping traces and audit logs to information elements in (ΦFOL,ΨFOL)).
Let toFOL(·) : (T ∪ L) → FOL(Preds) be an injective and monotonically increasing
function. Then, we instantiate b·c = Closure(toFOL(·)) in order to interpret both
traces and logs as information elements in (ΦFOL,ΨFOL).

Now we can instantiate logging specification LS in the information algebra (ΦFOL,ΨFOL).
To this end, a set of audit logging rules and definitions are assumed to be given in
FOL. Let Γ be this set. Moreover, a set of predicate symbols are assumed that reflect
on the predicates whose derivation need to be logged at runtime. This set is denoted
by S. A logging specification in this setting, receives a trace τ , combines the infor-
mation content of τ with closure of Γ, and then focuses on the predicates specified in
S. Intuitively, given Γ and S, a logging specification maps a trace τ to the set of all
predicates whose symbols are in S, and are derivable given rules in Γ and the events
in τ .

Definition 1.12 (Logging Specification in (ΦFOL,ΨFOL)). Given a set of FOL formu-
las Γ and a subset of predicate symbols S ⊆ Preds , a logging specification spec(Γ, S) :

T → ΦFOL is defined as spec(Γ, S) = τ 7→ (bτc ⊗ Closure(Γ))⇒FOL(S).

2 Implementation Model on Concurrent Systems

In this section, we propose an implementation model for correct audit logging in con-
current systems. To this end, we use a variant of π-calculus to specify the concurrent

3The reader is referred to [1] for the detailed proof.

6

system, and propose an instrumentation algorithm that retrofits the system according
to a given logging specification. We then specify and prove the properties of interest,
including the correctness of the instrumentation algorithm (Definition 1.7).

In Section 2.1, the syntax and semantics of the source system model is introduced.
Section 2.2 proposes a class of logging specifications that can specify temporal rela-
tions among computational events in concurrent systems. Section 2.3 describes the
syntax and semantics of the systems enhanced with audit logging capabilities. Lastly,
in Section 2.4, we discuss the instrumentation algorithm and the properties it satisfies.

2.1 Source System Model

We consider a core π-calculus as our source concurrent system model, denoted by
Π. One major distinguishing feature of π-calculus is modeling mobile processes using
the same category of names for both links and transferable objects, along with scope
extrusion. However, mobility is not used in our implementation model. Therefore
other seminal process calculi e.g., CSP [5] and CCS [7] can also be considered for
this purpose. We employ π-calculus due to its concise syntax and simple semantics
that provides a clean and sufficiently abstract specification of the required interac-
tions among concurrent components of the system. The syntax and semantics of the
source system are defined in the following. It is based on the representation of the
calculus given in [8] which deviates from standard π-calculus by dropping silent pre-
fixes, unguarded summations and labeled reduction system, for the sake of simplicity
and conciseness.

2.1.1 Syntax

Let N be the infinite denumerable set of names, and a, b, c, · · · and x, y, z, · · · range
over them.

Prefixes Prefixes α are defined as α ::= a(x) | āx. Prefix a(x) is the input prefix,
used to receive some name with placeholder x on link a. Prefix āx is the output
prefix, used to output name x on link a.

Agents and sub-agents Let A,B,C,D range over agent and sub-agent names,
and A be the finite set of such names. Agents (processes) and sub-agents (subpro-
cesses) P are defined as: P ::= 0 | α.P | (P |P) | (νx)P | C(y1, · · · , yn). 0 refers to the
nil process. α.P provides a sequence of operations in the process; first input/output
prefix α takes place, and then P executes. P |P provides parallelism in the system.
(νx)P restricts (binds) name x within P . C(y1, · · · , yn) refers to the (sub-)agent
invocation C with parameters y1, · · · , yn. Let P,Q,R range over processes and sub-
processes.

Free and bound names Name restriction and input prefix bind names in a
process. We denote the set of free names in process P with fn(P). α-conversion for
bound names is defined in the standard way.

Notational conventions A sequence of names is denoted by ã, i.e., a1, · · · , al for

7

some l. A sequence of name restrictions in a process (νa1)(νa2) · · · (νal)P is shown
by (νa1a2 · · · al)P , or in short (νã)P . We skip specifying the input name, if it is not
free in the following process, i.e., a.P refers to a(x).P where x /∈ fn(P). ā.P refers
to outputting a value on link a that can be elided, e.g., due to lack of relevance in
discussion.

Codebases Agent definitions are of the form A(x1, · · · , xn) , P . Let’s denote
the set of agent and sub-agent definitions with D. We assume the existence of a
universal codebase CU consisting of agent definitions of such form. This codebase
is used to define top-level agents. A top-level agent corresponds to a concurrent
components of the system. Top-level agents are supposed to execute in parallel and
occasionally communicate with each other to accomplish their own tasks, and in
aggregate the concurrent system. Let AU be the set of top-level agent names such
that AU ⊂ A. Throughout the paper we let m to be the size of AU , comprising of
A1, · · · , Am. CU is defined as a function from top-level agent names to their definitions,
i.e., CU : AU → D.

Moreover, we assume the existence of a local codebase for each top-level agent,
denoted by CL(A) for top-level agent A. A local codebase consists of sub-agent (sub-
process) definitions of the form BA(x1, · · · , xn) , P , where B is a sub-agent identifier,
and A is a top-level agent identifier annotated in the definition of B. We treat sub-
agents as internal modules or functions of a top-level process. Annotation of top-level
agent identifier is used for this purpose, i.e., BA specifies that B is a module of top-
level agent A. The set of sub-agent names is denoted by AL, defined as A−AU . CL
is defined as the function with signature CL : AU → AL → D.

Note that any process and subprocess definition can be recursive, e.g., if CU(A) =
[A(x1, · · · , xn) , P] then A(y1, · · · , yn) may appear in P . In the following, we use
A and B to range over top-level agent identifiers and sub-agent identifiers, resp. We
use C to range over both top-level agents, A, and sub-agents, BA. In the rest of
the paper, we refer to top-level agents simply by “agents”. We assume that in any
(sub)process definition C(x1, · · · , xn) , P , we have fn(P) ⊆ {x1, · · · , xn}. This
ensures that (sub)processes are closed.

Initial system Let AU = {A1, · · · , Am}. We posit a sequence of links c̃, that
connect these agents in the system. Then the initial concurrent system s is defined
as

s ::=
〈
Ps, CU , CL

〉
, (2.1)

where Ps = (νc̃)(A1(x̃1) | A2(x̃2) | · · · | Am(x̃m)), assuming fn(Ps) = ∅, i.e.,
⋃
i x̃i ⊆ c̃.

Configurations We define system configurations as κ ::= P , where P is the
process associated with the whole system. The initial configuration is then defined
as κ0 = Ps.

Substitutions A substitution is a function σ : N → N . The notation {y/x} is
used to refer to a substitution that maps x to y, and acts as the identity function
otherwise. {ỹ/x̃} is used to denote multiple explicit mappings in a substitution, where
x̃ and ỹ are equal in length. Pσ refers to replacing free names in P according to σ.
This is associated with renaming of bound names in P to avoid name clashes.

8

2.1.2 Semantics

In the following, we define evaluation contexts and the structural congruence between
processes. These definitions facilitate the specification of unlabeled operational se-
mantics in a concise manner.

Evaluation contexts A context is a process with a hole. An evaluation context
E is a context whose hole is not under input/output prefix, i.e.,

E ::= [] | (E|P) | (P |E) | (νa)E .

Structural congruence Two processes P andQ are structurally congruent under
the universal codebase CU , denoted by CU B P ≡ Q according to the following rules.

(i) Structural congruence is an equivalence relation.

(ii) Structural congruence is closed by the application of E , i.e., CU B P ≡ Q implies
CU B E [P] ≡ E [Q].

(iii) If P and Q are α-convertible, then CU B P ≡ Q.

(iv) The set of processes is an Abelian semigroup under | operator and unit element
0, i.e., for any CU , P , Q, and R, we have CU B P |0 ≡ P , CU B P |Q ≡ Q|P , and
CU B P |(Q|R) ≡ (P |Q)|R.

(v) For all A ∈ AU , if CU(A) = [A(x̃) , P], then CU B A(ỹ) ≡ P{ỹ/x̃}.

(vi) CU B (νa)0 ≡ 0.

(vii) If a /∈ fn(P), then CU B (νa)(P |Q) ≡ P |(νa)Q.

(viii) CU B (νa)(νb)P ≡ (νb)(νa)P .

We may elide CU in the specification of the structural congruence, if it is clear from
the context.

Operational semantics We define unlabeled reduction system in Figure 1, using
judgment CU , CL B κ −→ κ′. We may elide CU and CL in the specification of reduction
steps, since they are static and may be clear from the context, i.e., κ −→ κ′.

Note that according to structural congruence rules an agent invocation is struc-
turally congruent to its definition (part v), and thus considered as an “implicit” step
of execution according to rule STRUCT. Contrarily, rule CALL defines an “explicit”
reduction step for sub-agent invocations. This is due to some technicality in our mod-
eling: invocation of sub-agents could be logging preconditions and/or logging events
(introduced in Section 2.2), and hence need special semantic treatment at the time
of call (discussed later in Sections 2.3 and 2.4), e.g., deciding whether a record must
be stored in the log.

For a (potentially infinite) system trace τ = κ0κ1 · · · , we use notation CU , CL I τ
to specify the generation of trace τ under the universal and local codebases CU and

9

STRUCT
CU B P ≡ P ′ CU B Q ≡ Q′ CU , CL B P −→ Q

CU , CL B P ′ −→ Q′

CONTEXT
CU , CL B P −→ Q

CU , CL B E[P] −→ E[Q]

CALL
CL(A)(B) = [BA(x̃) , P]

CU , CL B BA(ỹ) −→ P{ỹ/x̃}

COMM
CU , CL B a(x).P | āb.Q −→ P{b/x} | Q

Figure 1: Unlabeled reduction semantics of Π.

CL, and according to the aforementioned unlabeled reduction system, i.e., CU , CL B
κi −→ κi+1 for all i ∈ {0, 1, · · · }.

For a system trace τ = κ0κ1 · · · , system s generates τ , denoted by s ⇓ τ iff s is
defined as (2.1), κ0 is defined as Ps, and CU , CL B κi −→ κi+1 for all i ∈ {0, 1, · · · }.

toFOL(·) instantiation for traces In order to specify a trace logically, we need
to instantiate toFOL(·) according to Definition 1.11. We consider the following pred-
icates to logically specify a trace: Comm/3, Call/4, Context/2, UniversalCB/3, and
LocalCB/4.4

Let CU , CL I τ , and τ = κ0 · · ·κκ′ · · · . Moreover, let t denote a timing counter.
We define a function that logically specifies a configuration within a trace. To this
end, let the helper function toFOL(κ, t) return the logical specification of κ at time
t. Essentially, toFOL(κ, t) specifies what the evaluation context and the redex are
within κ at time t, defined as follows:

1. toFOL(κ, t) = {Comm(t, a(x).P, āb.Q),Context(t, E)}, 5if κ ≡ E [a(x).P | āb.Q]
and κ′ ≡ E [P{b/x} | Q].

2. toFOL(κ, t) = {Call(t, A,B, ỹ),Context(t, E)}, if κ ≡ E [BA(ỹ))] and κ′ ≡
E [P{ỹ/x̃}]. Note that in Call(t, A,B, ỹ), we treat ỹ as a single list of elements,
rather than a sequence of elements passed as parameters to Call, i.e., Call is
always a quaternary predicate.

As an example, consider α-converted structurally equivalent processes. Let κ =
a(x).(νb)x̄b.0|āb.0. Since κ ≡ κ′ = a(x).(νd)x̄d.0|āb.0, and κ′ −→ (νd)b̄d.0|0,
we have κ −→ (νd)b̄d.0|0 according to the rule STRUCT in Figure 1. Then,
toFOL(κ, t) = toFOL(κ′, t) = {Comm(t, a(x).(νd)x̄d.0, āb.0),Context(t, [])}.

Logical specification of universal and local codebases, denoted by 〈CU〉 and 〈CL〉
resp., are defined as

1. 〈CU〉 = {UniversalCB(A, x̃, P) | CU(A) = [A(x̃) , P]}

2. 〈CL〉 = {LocalCB(A,B, x̃, P) | CL(A)(B) = [BA(x̃) , P]}
4/n refers to the arity of the predicate.
5Processes and evaluation contexts appear as predicate arguments in this presentation to boost

readability. Note that their syntax can be written as string literals to comply with the syntax of
predicate logic.

10

Note that in UniversalCB(A, x̃, P) and LocalCB(A,B, x̃, P), x̃ is a single list of el-
ements, rather than a sequence of elements passed as parameters to the predicates,
and thus these predicates have fixed arities.

We define logical specification of traces both for finite and infinite cases ac-
cording to the logical specification of configurations, and universal and local code-
bases, i.e., using toFOL(κ, t), 〈CU〉, and 〈CL〉. Let CU , CL I τ . If τ is finite, i.e.,
τ = κ0κ1 · · ·κn for some n, then its logical specification is defined as toFOL(τ) =⋃n
i=0 toFOL(κi, i)

⋃
〈CU〉

⋃
〈CL〉. Otherwise, for infinite trace τ = κ0κ1 · · · , toFOL(τ) =⋃

τ ′∈prefix(τ) toFOL(τ ′)
⋃
〈CU〉

⋃
〈CL〉, where toFOL(τ ′) =

⋃n
i=0 toFOL(κi, i), for

τ ′ = κ0κ1 · · ·κn. It is straightforward to show that toFOL(τ) is injective and mono-
tonically increasing.

2.2 A Class of Logging Specifications

We define the class of logging specifications LScall that specify temporal relations
among module invocations in concurrent systems. LScall is the set of all logging
specifications LS defined as spec(ΓG, {LoggedCall}), where ΓG is a set of FOL formu-
las, called guidelines, including formulas of the form

∀t0, · · · , tn, xs0 , · · · , xsn .

Call(t0, A0, B0, xs0)
n∧
i=1

(
Call(ti, Ai, Bi, xsi) ∧ ti < t0

)
∧ ϕ(t0, · · · , tn) ∧ ϕ′(xs0 , · · · , xsn)

m∧
j=1

(
∀t′j, ysj . ψj(xs0, · · · , xsn, ysj) ∧ ψ′j(t0, · · · , tn, t′j) =⇒ ¬Call(t′j, A

′
j, B

′
j, ysj)

)
=⇒ LoggedCall(A0, B0, xs0) (2.2)

in which for all l ∈ {0, · · · , n}, Al ∈ AU , Bl ∈ AL, xsl is a placeholder for a list
of parameters passed to Bl, and Call(tl, Al, Bl, xsl) specifies the event of invoking
module (subprocess) Bl by the top-level process Al at time tl with parameters xsl .
In addition, for all k ∈ {0, · · · ,m}, A′k ∈ AU , B′k ∈ AL, ysk is a placeholder for a
list of parameters passed to B′k, and Call(tk, A

′
k, B

′
k, ysk) specifies the event of invok-

ing module (subprocess) B′k by the top-level process A′k at time tk with parameters
ysk . In (2.2), ϕ(t0, · · · , tn) and ψ′j(t0, · · · , tn, t′j) are assumed to be a possibly empty
conjunctive sequence of literals of the form ti < tj for some i and j. Moreover, we de-
fine (positive/negative) triggers and logging events as follows: PostiveTriggers(LS) =
{(A1, B1), · · · , (An, Bn)}, NegativeTriggers = {(A′1, B′1), · · · , (A′m, B′m)}, Triggers =
PostiveTriggers ∪NegativeTriggers , and Logevent(LS) = (A0, B0). Logging precondi-
tions are predicates Call(ti, Ai, Bi, x̃) for all i ∈ {1, · · · , n} and predicates Call(t′j, A

′
j, B

′
j, ỹ)

for all j ∈ {1, · · · ,m}. As an additional condition, we assume that Logevent(LS) /∈
Triggers(LS).

11

2.3 Target System Model

We define the target system model, denoted by Πlog, as an extension to Π with the
following syntax and semantics. The instrumentation algorithm’s job is to map a
system specified in Π to a system in Πlog.

2.3.1 Syntax

Πlog extends prefixes with

α ::= · · · | callEvent(A,B, x̃) | emit(A,B, x̃) | addPrecond(x,A) | sendPrecond(x,A).

x̃ is considered as a single list of names in callEvent and emit, so that they have fixed
arities.

A configuration κ, in Πlog, is defined as the quintuple κ ::= (t, P,∆,Σ,Λ), with
the following details. t is a timing counter. P is the process associated with the whole
concurrent system. Processes in Πlog are defined similar to Π, without any extensions.
∆(·) is a mapping that receives an agent identifier A and returns the set of logical
preconditions (to log) that denote the events transpired locally in that agent. That
is, ∆(A) is a set of predicates of the form Call(t, A,B, x̃). Σ(·) is a mapping that
receives an agent identifier A and returns the set of all logical preconditions that
have taken place in the triggers, i.e., in all agents A′ ∈ AU , where (A′, B) ∈ Triggers
for some B ∈ AL. That is, Σ(A) is a set of predicates of the form Call(t, A′, B, x̃),
where (A′, B) ∈ Triggers . These preconditions are supposed to be gathered by A
from other agents A′, in order to decide whether to log an event. Λ(·) is a mapping
that receives an agent identifier A and returns the audit log recorded by that agent.
Λ(A) is a set of predicates of the form LoggedCall(A,B, x̃). The initial configuration
is κ0 = (0, Ps,∆0,Σ0,Λ0), where for any A ∈ CU , ∆0(A) = Σ0(A) = Λ0(A) = ∅.

2.3.2 Semantics

We use judgment CU , CL,ΓG B κ −→ κ′ to specify a step of reduction in Πlog. Figure
2 depicts the unlabeled reduction semantics of Πlog. CU , CL, and ΓG may be elided in
the specification of reduction steps since they are static and may be clear from the
context.

Πlog inherits the reduction semantics of Π, according to rule PI. Rule CALL EV
gives the reduction with prefix callEvent(A,B, x̃). In this case, ∆ gets updated for
agentA with information about the invocation of subprocessBA. In rule ADD PRECOND,
reduction with the prefix addPrecond(x,A) is specified. In this case, x is added to Σ.
Rule SEND PRECOND is about the reduction with prefix sendPrecond(x,A). In this
case, the set of logging preconditions that are collected by A, i.e., ∆(A), is converted
to a transferable object (aka object serialization), e.g., a string of characters describ-
ing the content of ∆(A), and sent though link x. Let serialize() be the semantic
function that handles this conversion. With prefix emit(A,B, x̃), agent A is supposed
to study whether the predicate LoggedCall(A,B, x̃) is logically derivable from the

12

PI
CU , CL B P −→ Q

CU , CL,ΓG B (t, P,∆,Σ,Λ) −→ (t+ 1, Q,∆,Σ,Λ)

CALL EV
∆′(A) = ∆(A) ∪ {Call(t, A,B, x̃)} ∀A′ ∈ AU − {A}.∆′(A′) = ∆(A′)

CU , CL,ΓG B (t, callEvent(A,B, x̃).P,∆,Σ,Λ) −→ (t+ 1, P,∆′,Σ,Λ)

ADD PRECOND
Σ′(A) = Σ(A) ∪ {x} ∀A′ ∈ AU − {A}.Σ′(A′) = Σ(A′)

CU , CL,ΓG B (t, addPrecond(x,A).P,∆,Σ,Λ) −→ (t+ 1, P,∆,Σ′,Λ)

SEND PRECOND
y = serialize(∆(A))

CU , CL,ΓG B (t, sendPrecond(x,A).P,∆,Σ,Λ) −→ (t+ 1, x̄y.P,∆,Σ,Λ)

LOG
Σ(A) ∪∆(A) ∪ ΓG ` LoggedCall(A,B, x̃)

Λ′(A) = Λ(A) ∪ {LoggedCall(A,B, x̃)} ∀A′ ∈ AU − {A}.Λ′(A′) = Λ(A′)

CU , CL,ΓG B (t, emit(A,B, x̃).P,∆,Σ,Λ) −→ (t+ 1, P,∆,Σ,Λ′)

NO LOG
Σ(A) ∪∆(A) ∪ ΓG 0 LoggedCall(A,B, x̃)

CU , CL,ΓG B (t, emit(A,B, x̃).P,∆,Σ,Λ) −→ (t+ 1, P,∆,Σ,Λ)

Figure 2: Unlabeled reduction semantics of Πlog.

local set of preconditions, i.e., ∆(A), the set of preconditions that are collected by
other agents involved in the enforcement of the logging specification, i.e., Σ(A), and
the set of guidelines ΓG. If the predicate is derivable, then it is added to the audit log
of A, i.e., Λ(A). Otherwise, the log does not change. Rule LOG specifies the former
case, whereas the rule NO LOG specifies the latter.

For a (potentially infinite) system trace τ = κ0κ1 · · · , we use notation CU , CL,ΓG I
τ to specify the generation of trace τ under the universal codebase CU , local codebase
CL, and set of guidelines ΓG, according to the reduction system, i.e., CU , CL,ΓG B
κi −→ κi+1 for all i ∈ {0, 1, · · · }.

The generated trace in Πlog out of a target system s, i.e., s ⇓ τ , can be defined in
the same style as defined in Π, i.e., by some valid initial system in Πlog

6, the initial
configuration κ0 in Πlog, and the aforementioned reduction system for Πlog.

The residual log of a configuration is defined as logof (κ) = L =
⋃
A∈AU

Λ(A),
where κ = (, , , ,Λ).7 This instantiates τ L for Πlog (Definition 1.4). Since L is
a set of logical literals, it suffices to define toFOL(·) for audit logs as toFOL(L) = L,
which completes the instantiation of bLc (Definition 1.11).

Note that arbitrary systems in Πlog do not guarantee any correctness of audit
logging. However, there is a subset of systems in Πlog that provably satisfy this prop-
erty. These systems use the extended prefixes (introduced as part of Πlog syntax) in a
particular way for this purpose. In the following section, we introduce an instrumen-

6In Section 2.4 one such initial system is given by the instrumentation algorithm.
7Underscore is used as wildcard.

13

tation algorithm to map any system in Π to a system in Πlog, and later prove that
any instrumented system satisfies correctness results for audit logging.

2.4 Instrumentation Algorithm

Instrumentation algorithm I takes a Π system, defined in (2.1), and a logging speci-
fication LS ∈ LScall , defined in Section 2.2, and produces a system s′ in Πlog defined
as s′ =

〈
P ′s, C ′U , C ′L

〉
, where P ′s = (νc̃)(νc̃′)(A1(x̃′1) | A2(x̃′2) | · · · | Am(x̃′m)). c̃′ is the

sequence of names of the form cij which are all fresh, i.e., they are not used already in
(2.1). Moreover, it is assumed that sub-agent identifiers Dij are also fresh, i.e., they
are undefined in CL component of (2.1).

Intuitively, I works as follows.

(i) I adds new links cij between agents Ai and Aj, where Ai is the agent that
includes a sub-agent whose invocation is considered a logging event, and Aj
is some agent that includes a sub-agent whose invocation is a trigger for that
logging event. cij is used as a link between Ai and Aj to communicate logging
preconditions (by sendPrecond and addPrecond prefixes).

(ii) Regarding the invocation of a sub-agent BA,

(a) if the invocation of BA is a trigger, then the execution of BA must be
preceded by callEvent prefix. This way, the invocation of BA is stored in A’s
local set of logging precondition (∆(A)), according to the rule CALL EV.

(b) if the invocation of BA is a logging event, then execution of BA must be
preceded by callEvent, similar to the case above. Next, it must communi-
cate on appropriate links (cijs) with all other agents that are involved as
triggers according to the logging specification. To this end, BA is supposed
to notify each of those agents to send their collected preconditions. Af-
ter receiving all those preconditions from involved agents on the dedicated
links, it adds them to Σ(A). This is done using addPrecond prefixes, accord-
ing to the rule ADD PRECOND. Then, it studies whether the invocation
must be logged, before following normal execution. This is facilitated by
emit prefix (rules LOG and NO LOG).

(c) if the invocation of BA is neither a trigger nor a logging event, then that
sub-agent executes without any change in behavior.

(iii) Regarding the invocation of an agent A

(a) if A includes a sub-agent BA whose invocation is considered a trigger,
then A must be able to receive and handle incoming requests for collected
preconditions. This is done by adding a subprocess to A that always listens
for requests on the dedicated link (cij) between itself and the agent that
may send such requests. Upon receiving such a request, it sends back

14

the preconditions, handled by prefix sendPrecond according to the rule
SEND PRECOND, and then continues to listen on the link.

(b) if A does not include any trigger invocation of a sub-agent, then A executes
without any changes.

Formally, the details of the returned system s′ are as follows:

(i) c̃′: is the sequence of all names cij where (Ai, B) = Logevent(LS) for some
B ∈ AL, and (Aj, B

′) ∈ Triggers(LS) for some B′ ∈ AL.

(ii) C ′L:

(a) C ′L(A)(B) = [BA(x̃) , callEvent(A,B, x̃).P], if (A,B) ∈ Triggers(LS) and
CL(A)(B) = [BA(x̃) , P].

(b) C ′L(A0)(B0) = [BA0
0 (x̃) , callEvent(A0, B0, x̃) . c̄01 . · · · . ¯c0n . c01(p1) . · · · . c0n(pn) .

addPrecond(p1, A0). · · · . addPrecond(pn, A0) . emit(A0, B0, x̃).P],
if (A0, B0) = Logevent(LS), CL(A0)(B0) = [BA0

0 (x̃) , P], and Triggers(LS) =
{(A1, B1), · · · , (An, Bn)}.

(c) C ′L(A)(B) = CL(A)(B), otherwise.

(iii) C ′U :

(a) If (Aj, B) ∈ Triggers(LS) for some B ∈ AL, and Ai be the agent that
(Ai, B

′) = Logevent(LS) for some B′ ∈ AL, then C ′U(Aj) = [Aj(x̃, cij) ,
P |DAj

ij (cij)], where CU(Aj) = [Aj(x̃) , P], and C ′L(Aj)(Dij) = [D
Aj

ij (cij) ,

cij.sendPrecond(cij, Aj).D
Aj

ij (cij)].

(b) If (Aj, B) /∈ Triggers(LS) for any B ∈ AL, then C ′U(Aj) = CU(Aj).

Note that Dij is defined recursively to facilitate listening on cij indefinitely for
incoming requests about logging preconditions. In addition, since cij is fresh, cij /∈
fn(P). Therefore, P cannot communicate on this link, e.g., to compromise logging
attempts.

2.4.1 Instantiation of :≈

According to Definition 1.5, semantics preservation relies on an abstraction of corre-
spondence relation :≈ between source and target traces. In this section, we instantiate
this relation for I. We define the source and target trace correspondence relation as
follows: τ1κ1 :≈ τ2κ2 iff κ1 = P1, κ2 = (t2, P2,∆2,Σ2,Λ2), and trim(P2) = P1.
Function trim is formally defined in Figure 3. Intuitively, it removes all prefixes,
sub-agents, and link names that I may add to a process.

15

trim(0) = 0 trim(α.P) =

trim(P) if α = cij , c̄ij , cij(x), c̄ijx,

callEvent(A,B, x̃), addPrecond(x,A),

sendPrecond(x,A), emit(A,B, x̃)

α.trim(P) otherwise

trim(P |Q) =

trim(P) if Q = DA

ij for some i, j, A

trim(Q) if P = DA
ij for some i, j, A

trim(P)|trim(Q) otherwise

trim((νx)P) =

{
trim(P) if x = cij for some i, j

(νx)trim(P) otherwise
trim(C(x̃)) =

{
trim(C(ỹ)) if x̃ = ỹ, cij for some i, j

C(x̃) otherwise

Figure 3: Function trim.

2.4.2 Main Results

Main properties include three results. The instrumentation algorithm I is semantics
preserving, deadlock-free, correct. These are specified in Theorems 2.7, 2.8, and 2.13,
resp.

Lemma 2.1. Ps :≈ (0, P ′s,∆0,Σ0,Λ0).

Proof. It is straightforward to show that trim(P ′s) = Ps, according to the definition
of trim in Figure 3.

Let −→∗ be the reflexive and transitive closure of reduction relation −→.

Lemma 2.2. Let (t, E [trim(P)],∆,Σ,Λ) −→ (t′, E [P ′],∆′,Σ′,Λ′). Then, there exists
some t′′, P ′′, ∆′′, Σ′′, and Λ′′, where

• (t, E [P],∆,Σ,Λ) −→∗ (t′′, E [P ′′],∆′′,Σ′′,Λ′′), and

• trim(P ′) = trim(P ′′).

Proof. By induction on the structure of P .

Lemma 2.3. Let τ1P1 :≈ τ2(t2, P2,∆2,Σ2,Λ2) and P1 −→ Q1. Then, there exists
some non-trivial trace τ ′2 such that (t2, P2,∆2,Σ2,Λ2) ⇓ τ ′2 and τ1P1Q1 :≈ τ2τ

′
2.

Proof. By induction on the derivation of P1 −→ Q1, and application of Lemma
2.2.

Lemma 2.4. Let τ1P1 :≈ τ2(t2, P2,∆2,Σ2,Λ2) and P1 ⇓ τ ′1. Then, there exists some
trace τ ′2 such that (t2, P2,∆2,Σ2,Λ2) ⇓ τ ′2 and τ1τ

′
1 :≈ τ2τ

′
2.

Proof. By induction on the derivation of P1 ⇓ τ ′1, and application of Lemma 2.3.

Lemma 2.5. Let τ1P1 :≈ τ2κ2 and κ2 −→ κ′2. Then, there exists some trace τ ′1 such
that P1 ⇓ τ ′1 and τ1τ

′
1 :≈ τ2κ2κ

′
2.

16

Proof. By induction on the derivation of κ2 −→ κ′2.

Lemma 2.6. Let τ1P1 :≈ τ2κ2 and κ2 ⇓ τ ′2. Then, there exists some trace τ ′1 such
that P1 ⇓ τ ′1 and τ1τ

′
1 :≈ τ2τ

′
2.

Proof. By induction on the derivation of κ2 ⇓ τ ′2, and application of Lemma 2.5.

Theorem 2.7 (Semantics preservation). I is semantics preserving (Definition 1.5).

Proof. Lemmas 2.1, 2.4, and 2.6 entail the result. In essence, Lemmas 2.1 and 2.4
satisfy the first condition in Definition 1.5, whereas Lemmas 2.1 and 2.6 satisfy the
second condition in that definition.

Theorem 2.8 (Deadlock-freeness). I is deadlock-free (Definition 1.6).

Proof. Let I(s,LS) ⇓ τ ′, and I(s,LS) be stuck following τ ′, i.e., for all configurations
κ′, we have I(s,LS) 6⇓ τ ′κ′. According to Theorem 2.7, there exists some trace τ ,
such that s ⇓ τ and τ :≈ τ ′. Then, there are two possible cases:

1. For any configuration κ, s 6⇓ τκ. Then, according to Definition 1.6, I(s,LS) is
deadlock-free, vacuously.

2. There exists some configuration κ such that s ⇓ τκ. Then, according to Lemma
2.3, there exists some non-trivial trace τ ′′ such that tail(τ ′) ⇓ τ ′′ and τκ :≈ τ ′τ ′′.
The former entails that I(s,LS) ⇓ τ ′τ ′′, which contradicts with the assumption
about I(s,LS) being stuck, and completes the proof.

Lemma 2.9. Let (t, P,∆,Σ,Λ) −→ (t′, Q,∆′,Σ′,Λ′) and LoggedCall(A,B, x̃) ∈
Λ′(A) − Λ(A). Then, there exist some evaluation context E and some process R
such that P = E [emit(A,B, x̃).R].

Proof. By induction on the derivation of unlabeled reduction relation, i.e., (t, P,∆,Σ,Λ) −→
(t′, Q,∆′,Σ′,Λ′).

Lemma 2.10. Let (t, P,∆,Σ,Λ) ⇓ τ(t′, P ′,∆′,Σ′,Λ′) and LoggedCall(A,B, x̃) ∈
Λ′(A)−Λ(A). Then, there exist some evaluation context E and some process R along
with trace τ ′ and configurations κ1 and κ2 such that τ ′κ1κ2 ∈ prefix (τ(t′, P ′,∆′,Σ′,Λ′)),
and P1 = E [emit(A,B, x̃).R], where κ1 = (, P1, , ,).

Proof. By induction on (t, P,∆,Σ,Λ) ⇓ τ(t′, P ′,∆′,Σ′,Λ′) and application of Lemma
2.9.

Let [· · · t]τ denote the prefix of τ of length t.

Lemma 2.11. If I(s,LS) ⇓ τ ′, τ :≈ τ ′, and τ ′ L, then toFOL(L) ⊆ Closure(ΓG ∪
toFOL(τ)) ∩ FOL({LoggedCall}).

17

Proof. Let tail(τ ′) = (, , , ,Λ). Assume that LoggedCall(A,B, x̃) ∈ toFOL(L).
Then, according to Lemma 2.10, there exist some trace τ̂ and configurations κ1 and
κ2 such that τ̂κ1κ2 ∈ prefix (τ ′), κ1 = (, P1, , ,), and P1 = E [emit(A,B, x̃).R].
By Theorem 2.7, we know that there exist some source trace τ0 such that s ⇓ τ0,
and it simulates the target trace τ̂κ1κ2, i.e., τ0 :≈ τ̂κ1κ2. According to I definition,
prefix emit can only appear in the log event of a logging specification. Therefore,
preconditions of rule (2.2) are satisfied by ΓG ∪ toFOL(τ0). Due to τ0 ∈ prefix (τ) and
monotonicity of toFOL(), the precondition of rule (2.2) are satisfied by ΓG∪toFOL(τ).
Therefore, LoggedCall(A,B, x̃) ∈ Closure(ΓG∪ toFOL(τ))∩FOL({LoggedCall}).

Lemma 2.12. If I(s,LS) ⇓ τ ′, τ :≈ τ ′, and τ ′ L, then Closure(toFOL(L)) ⊇
Closure(ΓG ∪ toFOL(τ)) ∩ FOL({LoggedCall}).

Proof. Note that Closure(ΓG ∪ toFOL(τ)) ∩ FOL({LoggedCall}) is a set of formulas
with literals that have predicate symbol LoggedCall. Thus it suffices to show that if
such literals are in Closure(ΓG ∪ toFOL(τ)) ∩ FOL({LoggedCall}), then they are in
toFOL(L).

Assume that LoggedCall(A0, B0, x̃) ∈ Closure(ΓG∪toFOL(τ))∩FOL({LoggedCall}).
This entails Call(t, A0, B0, x̃s) ∈ toFOL(τ) for some t in which preconditions of rule
(2.2) are satisfied. Then, tail([· · · t]τ) = E [BA0

0 (x̃s)] for some E . According to The-
orem 2.7, there exists some target trace τ̂ such that I(s,LS) ⇓ τ̂ , and [· · · t]τ :≈ τ̂ .
Since I is deadlock-free (Theorem 2.8), we know that I(s,LS) is not stuck after fol-
lowing execution trace τ̂ . Let tail(τ̂) = (, P̂ , , ,). Then, trim(P̂) = E [BA0

0 (x̃s)].
We have

(t̂, E [trim(P̂)], ∆̂, Σ̂, Λ̂) −→ (t̂+ 1, E [callEvent(A0, B0, x̃).c̄01. · · · . ¯c0n.c01(p1). · · · .c0n(pn).

addPrecond(p1, A0). · · · .addPrecond(pn, A0).emit(A0, B0, x̃).R], ∆̂, Σ̂, Λ̂)

By Lemma 2.2, we then have some trace τ0, and configurations κ1, · · · , κ3n+4 such
that (t̂, E [P̂], ∆̂, Σ̂, Λ̂) ⇓ τ0κ0κ1 · · ·κ3n+4 , where

• κ1 = (, E ′[BA0
0 (x̃)], , , Λ̂),

• κ2 = (, E ′[callEvent(A0, B0, x̃).c̄01. · · · . ¯c0n.c01(p1). · · · .c0n(pn).
addPrecond(p1, A0). · · · .addPrecond(pn, A0).
emit(A0, B0, x̃).R], , , Λ̂),

• ...

• κ3n+3 = (, E ′[emit(A0, B0, x̃).R], , , Λ̂), and

• κ3n+4 = (, E ′[R], , , Λ̂′).

Note that LoggedCall(A0, B0, x̃) ∈ Λ̂′(A0), which entails that if τ̂ τ0κ1 · · ·κ3n+4 L̂
then LoggedCall(A0, B0, x̃) ∈ L̂. Since [· · · (t + 1)]τ :≈ τ̂ τ0κ1 · · ·κ3n+4 and [· · · (t +
1)]τ ∈ prefix (τ), for any trace τ ′ where τ :≈ τ ′, if τ ′ L, then L̂ ⊆ L due to
monotonicity of log growth. This entails that LoggedCall(A0, B0, x̃) ∈ L, and thus
LoggedCall(A0, B0, x̃) ∈ toFOL(L).

18

Theorem 2.13 (Instrumentation correctness). I is correct (Definition 1.7).

Proof. Let s be a source system and LS be a logging specification defined as Sec-
tion 2.2. If I(s,LS) ⇓ τ ′, τ :≈ τ ′, and τ ′ L, then we need to show that
Closure(toFOL(L)) = LS (τ). By Lemma 2.11, we have toFOL(L) ⊆ Closure(ΓG ∪
toFOL(τ)) ∩ FOL({LoggedCall}). This entails that

Closure(toFOL(L)) ⊆ Closure(Closure(ΓG ∪ toFOL(τ)) ∩ FOL({LoggedCall}))
= Closure(Closure(Closure(ΓG) ∪ Closure(toFOL(τ))) ∩ FOL({LoggedCall}))
= LS (τ).

In addition, by Lemma 2.12, we have

Closure(toFOL(L)) ⊇ Closure(Closure(ΓG ∪ toFOL(τ)) ∩ FOL({LoggedCall}))
= Closure(Closure(Closure(ΓG) ∪ Closure(toFOL(τ))) ∩ FOL({LoggedCall}))
= LS (τ).

These two results imply that bLc = Closure(toFOL(L)) = LS (τ).

3 Conclusion

In this paper, we have proposed an implementation model to enforce correct audit
logging in concurrent environments that support negative triggers. In essence, we
have shown that the already specified algorithm for logging specifications that are
restricted to positive triggers is able to instrument concurrent systems according to
a formal specification of audit logging requirements that include negative triggers as
well. We go beyond Horn clause logic to specify these logging requirements, which
assert temporal relations among the events that transpire in different concurrent
components of the system as wells events that should not take place. We have proven
that our algorithm is semantics preserving, i.e., the instrumented system behaves
similar to the original system, modulo operations that correspond to audit logging.
Moreover, we have proven that our algorithm guarantees correct audit logs. This
ensures that the instrumented system avoids missing any logging event, as well as
logging unnecessary events. Correctness of audit logs are defined according to an
information-algebraic semantic framework. In this semantic framework, information
containment is used to compare the runtime behavior vs. the generated audit log.

References
[1] Amir-Mohammadian, S.: A Formal Approach to Combining Prospective and Retrospective Security. Ph.D. thesis,

The University of Vermont (July 2017)

[2] Amir-Mohammadian, S., Chong, S., Skalka, C.: Correct audit logging: Theory and practice. In: Principals of
Security and Trust. pp. 139–162 (2016)

19

[3] Amir-Mohammadian, S., Kari, C.: Correct audit logging in concurrent systems. Electronic Notes in Theoretical
Computer Science 351, 115–141 (September 2020), part of Special Issue: Proceedings of LSFA 2020, the 15th
International Workshop on Logical and Semantic Frameworks, with Applications

[4] Erlingsson, Ú.: The inlined reference monitor approach to security policy enforcement. Ph.D. thesis, Cornell
University (2003)

[5] Hoare, C.A.R.: Communicating sequential processes. In: The origin of concurrent programming, pp. 413–443.
Springer (1978)

[6] Kohlas, J., Schmid, J.: An algebraic theory of information: An introduction and survey. Information 5(2), 219–254
(2014)

[7] Milner, R.: Communication and concurrency, vol. 84. Prentice hall New York etc. (1989)

[8] Parrow, J.: An introduction to the π-calculus. In: Handbook of Process Algebra, pp. 479–543. Elsevier (2001)

[9] Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and System Security 3(1), 30–50
(2000)

20

